Skip to Main Content
Table 2 (continued): Results of the hierarchical regression analyses
  Alcohol consumption 
  SE b Beta [95%-CI] p R [95%-CI] √(ΔR²) √(ΔR²) [95%-CI] 
Step 1 Age -.09 0.03 -.09 [-0.15, -0.03] .007 .16 [0.12, 0.20] .16 [0.12, 0.20] 
Gender -.14 0.02 -.14 [-0.18, -0.10] <.001 
Step 2 Age -.09 0.03 -.09 [-0.15, -0.03] .006 .17 [0.13, 0.21] .00 [-0.04, 0.04] 
Gender -.14 0.02 -.14 [-0.18, -0.10] <.001 
Shift work -.04 0.02 -.04 [-0.08, 0.00] .068 
  Alcohol consumption 
  SE b Beta [95%-CI] p R [95%-CI] √(ΔR²) √(ΔR²) [95%-CI] 
Step 1 Age -.09 0.03 -.09 [-0.15, -0.03] .007 .16 [0.12, 0.20] .16 [0.12, 0.20] 
Gender -.14 0.02 -.14 [-0.18, -0.10] <.001 
Step 2 Age -.09 0.03 -.09 [-0.15, -0.03] .006 .17 [0.13, 0.21] .00 [-0.04, 0.04] 
Gender -.14 0.02 -.14 [-0.18, -0.10] <.001 
Shift work -.04 0.02 -.04 [-0.08, 0.00] .068 

<em>Note.</em> SE = standard error; [95%-CI] = confidence interval for b and Beta; <em>p</em> = <em>p</em>-value; R[95%-CI] = confidence interval for R; √(ΔR²)[95%-CI] = confidence interval for √(ΔR²).

Close Modal

or Create an Account

Close Modal
Close Modal