Skip to Main Content
Table 1.

Summary of literature containing hydrogen-natural gas nitrogen oxides (NOx) emissions data used in this work. DOI: https://doi.org/10.1525/elementa.2021.00114.t1

Data SetAuthorsYear of PublicationTitleData LocationCombustion TypeBurner End UseRange of H2 (%)φa (Fuel to Air Ratio)NOx With Increasing H2
M. S. Cellek and A. Pinarbasi 2018  Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas, and hydrogen as fuels Fig. 12a N/A Research 0–100 (mass) 0.833 Increase 
M. K. Buyukakin and S. Oztuna 2020 Numerical investigation on hydrogen-enriched methane combustion in a domestic back-pressure boiler and nonpremixed burner system from flame structure and pollutants aspect Fig. 9 Nonpremixed Domestic boiler 0–75 (mass) 0.833 Increase 
S. Choudhury, V. McDonell, and S. Samuelsen 2020  Combustion performance of low-NOx and conventional water heaters operated on hydrogen enriched gas Fig. 7b b Partially premixed Water storage heater 0–30 (vol.) >1 Negligible 
Y. Zhao, V. McDonell, and S. Samuelsen 2019b  Experimental assessment of the combustion performance of an oven burner operated on pipeline natural gas mixed with hydrogen Fig. 12a b Partially premixed Oven burner 0–25 (vol.) 1.55–1.4 Negligible 
Y. Zhao, V. McDonell, and S. Samuelsen 2019a  Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner Fig. 12a Premixed Cooktop burner 0–50 (vol.) 2–1.5 Decrease 
S. A. A. El-Ghafour, A. H. E. El-dein, and A. A. R. Aref 2010  Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame Fig. 5 c Nonpremixed Research 0–50 (vol.) N/A Increase 
F. Cozzi and A. Coghe 2006  Behavior of hydrogen-enriched nonpremixed swirled natural gas flames Fig. 9 Nonpremixed Research 0–100 (vol.) 0.71-0.17 Increase 
8a P. Rajpara, R. Shah, and J. Banerjee 2018  Effect of hydrogen addition on combustion and emission characteristics of methane fueled upward swirl can combustor Fig. 12a N/A Research 0–10 (mass) 0.3 Increase 
8b P. Rajpara, R. Shah, and J. Banerjee 2018  Effect of hydrogen addition on combustion and emission characteristics of methane fueled upward swirl can combustor Fig. 12b N/A Research 0–80 (vol.) 0.345–0.14 Increase 
F. H. V. Coppens, J. De Ruyck, and A. A. Konnov 2007  Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane + air flames Fig. 6 N/A Research 0–35 (mol.) 1.25 Decrease 
10 H. S. Kim, V. K. Arghode, and A. K. Gupta 2009  Flame characteristics of hydrogen-enriched methane–air premixed swirling flames Fig. 9e d Premixed Research 0–9 (mass) 0.717–0.694 Increase 
11a P. Nitschke-Kowsky and W. Wessing 2012  Impact of hydrogen admixture in installed gas appliances Fig. 10 Premixed Domestic boiler 0–30 (vol.) N/A Decrease 
11b P. Nitschke-Kowsky and W. Wessing 2012  Impact of hydrogen admixture in installed gas appliances Fig. 11 Premixed Domestic boiler 0–30 (vol.) N/A Decrease 
12 M. J. Kippers, J. C. De Laat, R. J. M. Hermkens, J. J. Overdiep, A. van der Molen, W. C. van Erp, and A. van der Meer 2011  Pilot project on hydrogen injection in natural gas on island Ameland in the Netherlands Fig. 9 Condensing boiler Domestic boiler 0–20 (vol.) N/A Decrease 
13 M. Ilbas, I. Yilmaz, N. Vesiroglu, and Y. Kaplan 2005 Hydrogen as burner fuel: modeling of hydrogen–hydrocarbon composite fuel combustion and NOx formation in a small burner Table III Nonpremixed Research 0–100 (vol.) ≍1 Increase 
14 S. Naha and S. K. Aggarwal 2004  Fuel effects on NOx emissions in partially premixed flames Fig. 12 Partially premixed Research 0–90 (vol.) N/A Negligible 
Data SetAuthorsYear of PublicationTitleData LocationCombustion TypeBurner End UseRange of H2 (%)φa (Fuel to Air Ratio)NOx With Increasing H2
M. S. Cellek and A. Pinarbasi 2018  Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas, and hydrogen as fuels Fig. 12a N/A Research 0–100 (mass) 0.833 Increase 
M. K. Buyukakin and S. Oztuna 2020 Numerical investigation on hydrogen-enriched methane combustion in a domestic back-pressure boiler and nonpremixed burner system from flame structure and pollutants aspect Fig. 9 Nonpremixed Domestic boiler 0–75 (mass) 0.833 Increase 
S. Choudhury, V. McDonell, and S. Samuelsen 2020  Combustion performance of low-NOx and conventional water heaters operated on hydrogen enriched gas Fig. 7b b Partially premixed Water storage heater 0–30 (vol.) >1 Negligible 
Y. Zhao, V. McDonell, and S. Samuelsen 2019b  Experimental assessment of the combustion performance of an oven burner operated on pipeline natural gas mixed with hydrogen Fig. 12a b Partially premixed Oven burner 0–25 (vol.) 1.55–1.4 Negligible 
Y. Zhao, V. McDonell, and S. Samuelsen 2019a  Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner Fig. 12a Premixed Cooktop burner 0–50 (vol.) 2–1.5 Decrease 
S. A. A. El-Ghafour, A. H. E. El-dein, and A. A. R. Aref 2010  Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame Fig. 5 c Nonpremixed Research 0–50 (vol.) N/A Increase 
F. Cozzi and A. Coghe 2006  Behavior of hydrogen-enriched nonpremixed swirled natural gas flames Fig. 9 Nonpremixed Research 0–100 (vol.) 0.71-0.17 Increase 
8a P. Rajpara, R. Shah, and J. Banerjee 2018  Effect of hydrogen addition on combustion and emission characteristics of methane fueled upward swirl can combustor Fig. 12a N/A Research 0–10 (mass) 0.3 Increase 
8b P. Rajpara, R. Shah, and J. Banerjee 2018  Effect of hydrogen addition on combustion and emission characteristics of methane fueled upward swirl can combustor Fig. 12b N/A Research 0–80 (vol.) 0.345–0.14 Increase 
F. H. V. Coppens, J. De Ruyck, and A. A. Konnov 2007  Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane + air flames Fig. 6 N/A Research 0–35 (mol.) 1.25 Decrease 
10 H. S. Kim, V. K. Arghode, and A. K. Gupta 2009  Flame characteristics of hydrogen-enriched methane–air premixed swirling flames Fig. 9e d Premixed Research 0–9 (mass) 0.717–0.694 Increase 
11a P. Nitschke-Kowsky and W. Wessing 2012  Impact of hydrogen admixture in installed gas appliances Fig. 10 Premixed Domestic boiler 0–30 (vol.) N/A Decrease 
11b P. Nitschke-Kowsky and W. Wessing 2012  Impact of hydrogen admixture in installed gas appliances Fig. 11 Premixed Domestic boiler 0–30 (vol.) N/A Decrease 
12 M. J. Kippers, J. C. De Laat, R. J. M. Hermkens, J. J. Overdiep, A. van der Molen, W. C. van Erp, and A. van der Meer 2011  Pilot project on hydrogen injection in natural gas on island Ameland in the Netherlands Fig. 9 Condensing boiler Domestic boiler 0–20 (vol.) N/A Decrease 
13 M. Ilbas, I. Yilmaz, N. Vesiroglu, and Y. Kaplan 2005 Hydrogen as burner fuel: modeling of hydrogen–hydrocarbon composite fuel combustion and NOx formation in a small burner Table III Nonpremixed Research 0–100 (vol.) ≍1 Increase 
14 S. Naha and S. K. Aggarwal 2004  Fuel effects on NOx emissions in partially premixed flames Fig. 12 Partially premixed Research 0–90 (vol.) N/A Negligible 

aRanges are displayed in order of low to high hydrogen fraction.

bCorrection to 3% O2 has been chosen as data for use here, as this is most commonly used for stationary combustion. Authors suggest that correction to CO2 is affected by hydrogen rich fuels and may not be a fair method here.

cData were taken from midburner and radial distance of 7 mm (2dj), as this is where maximum NOx emissions were measured. This is useful for considering a worst-case scenario.

dData were taken from midswirl strength and 2.5 mm from burner exit, as this is where maximum NOx emissions were measured. This is useful for considering a worst-case scenario.

Close Modal

or Create an Account

Close Modal
Close Modal