Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-1 of 1
Kahl Hellmer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Music Perception
Music Perception (2015) 33 (2): 147–162.
Published: 01 December 2015
Abstract
Human performers introduce temporal variability in their performance of music. The variability consists of both long-range tempo changes and microtiming variability that are note-to-note level deviations from the nominal beat time. In many contexts, microtiming is important for achieving certain preferred characteristics in a performance, such as hang , drive, or groove ; but this variability is also, to some extent, stochastic. In this paper, we present a method for quantifying the microtiming variability. First, we transcribed drum performance audio files into empirical data using a very precise onset detection system. Second, we separated the microtiming variability into two components: systematic variability (SV), defined as recurrent temporal patterns, and residual variability (RV), defined as the residual, unexplained temporal deviation. The method was evaluated using computer-performed audio drum tracks and the results show a slight overestimation of the variability magnitude, but proportionally correct ratios between SV and RV. Thereafter two data sets were analyzed: drum performances from a MIDI drum kit and real-life drum performances from professional drum recordings. The results from these data sets show that up to 65 percent of the total micro-timing variability can be explained by recurring and consistent patterns.