The topic of musical motion has generated a considerable amount of controversy in the past few years (P. Desain, H. Honing, H. van Thienen, & L. Windsor, 1998). In this essay it is argued that motion is central to our understanding of many aspects of music, particularly to our understanding of rhythm, and that an adequate account of motion in music requires a neurobiological perspective. Two possible mechanisms are discussed that may form a neurobiological basis for the association of motion in music: a vestibulomotor mechanism and an audio-visuo-motor mechanism. These two mechanisms in turn may mediate two distinct kinds of musical motion: gesture and locomotion.

References

References
Alexander, R. N. (1995). Simple models of human movement. Applied Mechanics Review, 48, 461-469.
Bickford, R., Jacobson, J., & Cody, D. (1964). Nature of averaged evoked potentials to sound and other stimuli in man. Annals of the New York Academy of Sciences, 112, 204-223.
Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. London and Cambridge, MA: MIT Press.
Cazals, Y., Aran, J., Erre, J., Guihaume, A., & Aurousseau, C. (1983). Vestibular acoustic reception in the guinea pig: A saccular function? Acta Otolaryngologica, 95, 211- 217.
Chez, C. (1991) The cerebellum. In E. Kandel, J. Schwartz, & T. Jessell (Eds.), Principles of neural science (pp. 626-678). Norwalk, CT: Appleton & Lange.
Colebatch, J., Halmagyi, G., & Skuse, N. (1994). Myogenic potentials generated by a click- evoked vestibulocollic reflex. Journal of Neurology, Neurosurgery and Psychiatry, 57, 190-197.
Desain, P., Honing, H., van Thienen, H., & Windsor, L. (1998). Computational modeling of music cognition: Problem or solution? Music Perception, 16, 151-166.
Dibble, K. (1995). Hearing loss and music. Journal of the Audio Engineering Society, 43, 251-266.
Evans, E. E, & Whitfield, I. C. (1964). Classification of unit responses in the auditory cortex. Journal of Physiology, 171, 476-493.
Fant, G., 1960. Acoustic theory of speech production. The Hague: Mouton.
Ferber-Viart, C, Ducleax, R., Colleaux, B., & Dubreuil, C. (1977). Myogenic vestibu- lar-evoked potentials in normal subjects: A comparison between responses obtained from sternomastoid and trapezius muscles. Acta Otolaryngologica (Oslo), 117, 472- 481.
Friberg, A., & Sundberg, J. (1999). Does music performance allude to locomotion? A model of final ritardandi derived from measurements of stopping runners. Journal of the Acous- tical Society of America, 105, 1469-1484.
Gracovetsky, S. (1990). Musculoskeletal function of the spine. In J. M. Winters & S. L-Y. Woo (Eds.), Multiple muscle systems: Biomechanics and movement organisation. New York: Springer- Verlag.
Heeger, D.(1987). Model for the extraction of image flow. Journal of the Optical Society of America A. Optics and Image Science, 4, 1454-1470.
Kowalski, D. , Derireux, D., & Shamma, S. (1996). Analysis of dynamic spectra in ferret primary auditory cortex. Journal of Neurophysiology, 76, 3503-3523.
Liberman, A., & Mattingly, I. (1985). The motor theory of speech perception revised. Cog- nition. 21, 1-36.
Longuet-Higgins, H. C, & Lisle, E. R. (1989). Modelling musical cognition. Contempo- rary Music Review, 3, 15-27.
Marr, D. (1982). Vision. New York: Freeman.
McCue, M., & Guinan, J. (1995). Spontaneous activity and frequency selectivity of acous- tically responsive vestibular afferents in the cat. Journal of Neurophysiology, 74, 1563- 1572.
Miall, R. C, Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith Predictor? Journal of Motor Behavior, 25, 203-216.
Moffat, A., & Capranica, R. (1976). Auditory sensitivity of the saccule in the American toad (Bufo americanus). Journal of Comparative Physiology, 105, 1-10.
Popper, A., Platt, C, & Saidal, W. (1982). Acoustic functions in the fish ear. Transactions in Neural Science, August, 276-280.
Sundberg, R. (1992). Phonatory vibrations in singers: A critical review. Music Perception, 9, 261-382.
Todd, N. P. McAngus (1985). A model of expressive timing in tonal music. Music Percep- tion 3, 33-58.
Todd, N. P. McAngus (1991). The communication of self-motion in musical expression. Proceedings of the International Workshop on Man-Machine Interaction in Live Perfor- mance (pp. 151-162). Pisa: Music Department of CNICE/CNR.
Todd, N. P. McAngus (1992). The dynamics of dynamics: a model of musical expression. Journal of the Acoustical Society of America, 91, 3540-3550.
Todd, N. P. McAngus (1993). Vestibular feedback in music performance. Music Perception, 10,379-382.
Todd, N. P. McAngus (1994). The auditory primal sketch: A multi-scale model of rhythmic grouping. Journal of New Music Research, 23, 25-70.
Todd, N. P. McAngus (1995). The kinematics of musical expression. Journal of the Acous- tical Society of America, 97, 1940-1949.
Todd, N. P McAngus (1996a). An auditory cortical theory of auditory stream segregation. Network: Computation in Neural Systems, 7, 349-356.
Todd, N. P McAngus (1996b). Towards a theory of the central auditory system. In B. Pennycook (Ed.), Proceedings of the Fourth International Conference on Music Percep- tion and Cognition (pp. 173-178). Montreal: ICMPC.
Todd, N. P. McAngus (1998). A model of auditory image flow I: Architecture. Journal of the Acoustical Society of America, 103, 2844.
Todd, N. P. McAngus (1999). Frequency following and inhibition in acoustically evoked vestibularly mediated EMG. Manuscript in preparation.
Todd, N. P. McAngus, & Brown, G. J. (1996). Visualization of rhythm, time and metre. Artificial Intelligence Review, 10, 253-273.
Todd, N. P. McAngus, & Brown, D. (1998). A model of auditory image flow II: Detection of AM and FM. Journal of the Acoustical Society of America, 103, 2844.
Todd, N. P. McAngus, & Cody, F. (in press). Vestibular responses to loud dance music: A physiological basis for the "rock and roll threshold"? Journal of the Acoustical Society of America.
Todd, N. P. McAngus, Cody, F., & Banks, J. (1999). Frequency selectivity of acoustically evoked saccularly mediated EMG in the sternocleidomastoid muscle. Manuscript sub- mitted for publication.
Todd, N. P. McAngus, & Cousins, R. (1999). Is beat induction mediated by an internal representation of the body? Evidence for a sensory-motor theory of rhythm perception. Manuscript submitted for publication.
Todd, N. P. McAngus, & Clarke, E. F. (1995). The perception of rhythmic structure in expressive musical performance. In M. Newman (Ed.), Proceedings of the 15th Interna- tional Congress of Acoustics (Vol. III, pp. 459-462). Trondheim, Norway: Acoustical Society of Norway.
Todd, N. P. McAngus, & Kohon, S. (1999). Testing a sensory-motor theory of rhythm perception. Manuscript in preparation.
Todd, N. P. McAngus, Lee, C. S., & O'Boyle, D. J. (1998, October). A sensory-motor theory of rhythm and timing in music and speech. In Proceedings of the International Conference on Neural Information Processing, ICONIP '98. Kitakyushu, Japan: Japa- nese Neural Network Society.
Todd, N. P., Lee, C. S., & O'Boyle, D. J. (1999). A sensory-motor theory of rhythm, time perception and beat induction. Journal of New Music Research, 28, 1-24.
Townsend, G., & Cody, D. (1971). The average inion response evoked by acoustic stimula- tion: Its relation to the saccule. Annals of Otology, Rhinology and Laryngology, 80, 121-131.
Wilson, V, & Peterson, B. (1981). In V. B. Brooks (Ed.), Handbook of physiology, Section 1: The nervous system, Vol. II. Motor control, Part 1 (pp. 667-702). Bethesda, MD: American Physiological Society.
Wit, H., Bleeker, J., & Mulder, H. (1984). Response of pigeon vestibular nerve fibres to sound and vibration with audio frequencies. Journal of the Acoustical Society of America, 75, 202-208.
Young, E., Fernandez, C, & Goldberg, J. (1977). Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Ada Otolaryngologica, 84, 352- 360.
This content is only available via PDF.