Perceived octaves are stretched, requiring frequency-dependent ratios that generally exceed 2:1. Small intervals seem to be compressed perceptually. Whether this compression also depends on frequency is unclear. To examine this question, six experienced string instrumentalists each made perceptual judgments of sinusoidally formed major seconds, perfect fourths, and octaves above each of four lower frequencies. The frequency ratio for each perceived interval type varied with lower frequency. The pattern of this variation differed between the octave and the other two interval types and across subjects. A consequence is that nonlinear loci in a two-dimensional space are mathematically necessary for a complete representation of an individual listener's subjectively equal musical intervals. The listener apparently quickly assimilates the intervals produced by performers to these personal interval loci.

[Footnotes]

[Footnotes]
1
Rosner & Pickering, 1994
2
Luce, 1959

References

References
Burns, E. M. (1999). Intervals, scales, and tuning. In D. Deutsch (Ed.), The psychology of music (2nd ed., pp. 215-264). New York: Academic Press.
Burns, E. M., & Campbell, S. L. (1994). Frequency and frequency ratio resolution by pos- sessors of relative and absolute pitch: Examples of categorical perception? Journal of the Acoustical Society of America, 96, 2704-2719.
Greene, P. C. (1937). Violin intonation. Journal of the Acoustical Society of America, 9, 43-44.
Hartmann, W. M. (1993). On the origin of the enlarged melodic octave. Journal of the Acoustical Society of America, 93, 3400-3409.
Loosen, F. (1993). Intonation of solo violin performance with reference to equally tem- pered, Pythagorean, and just intonations. Journal of the Acoustical Society of America, 93, 525-539.
Luce, R. D., & Krumhansl, C. L. (1988). Measurement, scaling, and psychophysics. In R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Luce (Eds.), Stevens's handbook of experimental psychology (pp. 3-74). New York: Wiley.
Luce, R. D. (1959). On the possible psychophysical laws. Psychological Review, 66, 81-95.
Mason, J. A. (1960). Comparison of solo and ensemble performances with reference to Pythagorean, just, and equi-tempered intonations. Journal of Research of Music Educa- tion, 8, 31-38.
Narmour, E. (1990). The analysis and cognition of basic melodic structures: The implica- tion-realization model. Chicago: University of Chicago Press.
Nickerson, J. F. (1949). Intonation of solo and ensemble performance of the same melody. Journal of the Acoustical Society of America, 21, 593-595.
Ohgushi, K. (1983). The origin of tonality and a possible explanation of the octave enlarge- ment phenomenon. Journal of the Acoustical Society of America, 73, 1694-1700.
Painton, S. W., Cullinan, W. L., & Mencke, E. O. (1977). Individual pitch functions and pitch-duration cross-dimensional matching. Perception and Psychophysics, 21, 469-476.
Rasch, R. A., & Plomp, R. (1982). The perception of musical tones. In D. Deutsch (Ed.), The psychology of music (1st ed., pp. 1-24). New York: Academic Press.
Rakowski, A. (1976). Tuning of isolated musical intervals. Journal of the Acoustical Society of America, 59, S50.
Rakowski, A. (1990). Intonation variants of musical intervals in isolation and in musical contexts. Psychology of Music, 18, 60-72.
Rakowski, A., & Miśkiewicz, A. (1985). Deviations from equal temperament in tuning isolated musical intervals. Archives of Acoustics, 10, 95-104.
Robinson, D. W., & Dadson, R. S. (1956). A redetermination of equal-loudness contours for pure tones. British Journal of Applied Physics, 7, 166-181.
Rosner, B. S., & Pickering, J. B. (1994). Vowel perception and production. Oxford: Oxford University Press.
Shackford, C. (1961). Some aspects of perception. I: Sizes of harmonic intervals in perfor- mance. Journal of Music Theory, 5, 162-202.
Shackford, C. (1962a). Some aspects of perception. II: Interval sizes and tonal dynamics in performance. Journal of Music Theory, 6, 66-90.
Shackford, C. (1962b). Some aspects of perception. III: Addenda. Journal of Music Theory, 6, 295-303.
Siegel, S., & Castellan, N. J., Jr. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New York: McGraw-Hill.
Stevens, S. S., & Volkmann, J. (1940). The relation of pitch to frequency: A revised scale. American Journal of Psychology, 53, 329-353.
Sundberg, J. (1991). The science of musical sounds. London: Academic Press.
Sundberg, J. E. R, & Lindqvist, J. (1973). Musical octaves and pitch. Journal of the Acous- tical Society of America, 54, 922-929.
Terhardt, E. (1971). Die Tonhöhe harmonischer Klänge und das Oktavintervall. Acustica, 24, 126-136.
van den Brink, G. (1977). Octave and fifth settings for pure tones and residue sounds. In E. F. Evans & J. P. Wilson (Eds.), Psychophysics and physiology of hearing (pp. 373-379). London: Academic Press.
Walliser, K. (1969). Über die Spreizung von empfundenen Intervallen gegeniiber mathematisch harmonischen Intervallen bei Sinustönen. Frequenz, 23, 139-143.
Ward, W. D. (1954). Subjective musical pitch. Journal of the Acoustical Society of America, 26, 369-380.
Wier, C. C, Jesteadt, W., & Green, D. M. (1977). Frequency discrimination as a function of frequency and sensation level. Journal of the Acoustical Society of America, 61, 178- 184.
This content is only available via PDF.