Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-9 of 9
Keywords: Tropospheric Ozone
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Elementa: Science of the Anthropocene (2020) 8 (1): 034.
Published: 30 December 2020
...; V. Naik; S. Oltmans; D. A. Plummer; L. E. Revell; A. Saiz-Lopez; P. Saxena; Y. M. Shin; I. Shahid; D. Shallcross; S. Tilmes; T. Trickl; T. J. Wallington; T. Wang; H. M. Worden; G. Zeng Our understanding of the processes that control the burden and budget of tropospheric ozone has changed...
Abstract
Our understanding of the processes that control the burden and budget of tropospheric ozone has changed dramatically over the last 60 years. Models are the key tools used to understand these changes, and these underscore that there are many processes important in controlling the tropospheric ozone budget. In this critical review, we assess our evolving understanding of these processes, both physical and chemical. We review model simulations from the International Global Atmospheric Chemistry Atmospheric Chemistry and Climate Model Intercomparison Project and Chemistry Climate Modelling Initiative to assess the changes in the tropospheric ozone burden and its budget from 1850 to 2010. Analysis of these data indicates that there has been significant growth in the ozone burden from 1850 to 2000 (approximately 43 ± 9%) but smaller growth between 1960 and 2000 (approximately 16 ± 10%) and that the models simulate burdens of ozone well within recent satellite estimates. The Chemistry Climate Modelling Initiative model ozone budgets indicate that the net chemical production of ozone in the troposphere plateaued in the 1990s and has not changed since then inspite of increases in the burden. There has been a shift in net ozone production in the troposphere being greatest in the northern mid and high latitudes to the northern tropics, driven by the regional evolution of precursor emissions. An analysis of the evolution of tropospheric ozone through the 21st century, as simulated by Climate Model Intercomparison Project Phase 5 models, reveals a large source of uncertainty associated with models themselves (i.e., in the way that they simulate the chemical and physical processes that control tropospheric ozone). This structural uncertainty is greatest in the near term (two to three decades), but emissions scenarios dominate uncertainty in the longer term (2050–2100) evolution of tropospheric ozone. This intrinsic model uncertainty prevents robust predictions of near-term changes in the tropospheric ozone burden, and we review how progress can be made to reduce this limitation.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2020) 8: 23.
Published: 08 June 2020
...; Ludwig Ries; Irina Senik; Karin Sjöberg; Sverre Solberg; Gerard T. Spain; Wolfgang Spangl; Martin Steinbacher; David Tarasick; Valerie Thouret; Xiaobin Xu; Detlev Helmig; Ian Faloona Extracting globally representative trend information from lower tropospheric ozone observations is extremely difficult due...
Abstract
Extracting globally representative trend information from lower tropospheric ozone observations is extremely difficult due to the highly variable distribution and interannual variability of ozone, and the ongoing shift of ozone precursor emissions from high latitudes to low latitudes. Here we report surface ozone trends at 27 globally distributed remote locations (20 in the Northern Hemisphere, 7 in the Southern Hemisphere), focusing on continuous time series that extend from the present back to at least 1995. While these sites are only representative of less than 25% of the global surface area, this analysis provides a range of regional long-term ozone trends for the evaluation of global chemistry-climate models. Trends are based on monthly mean ozone anomalies, and all sites have at least 20 years of data, which improves the likelihood that a robust trend value is due to changes in ozone precursor emissions and/or forced climate change rather than naturally occurring climate variability. Since 1995, the Northern Hemisphere sites are nearly evenly split between positive and negative ozone trends, while 5 of 7 Southern Hemisphere sites have positive trends. Positive trends are in the range of 0.5–2 ppbv decade –1 , with ozone increasing at Mauna Loa by roughly 50% since the late 1950s. Two high elevation Alpine sites, discussed by previous assessments, exhibit decreasing ozone trends in contrast to the positive trend observed by IAGOS commercial aircraft in the European lower free-troposphere. The Alpine sites frequently sample polluted European boundary layer air, especially in summer, and can only be representative of lower free tropospheric ozone if the data are carefully filtered to avoid boundary layer air. The highly variable ozone trends at these 27 surface sites are not necessarily indicative of free tropospheric trends, which have been overwhelmingly positive since the mid-1990s, as shown by recent studies of ozonesonde and aircraft observations.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 39.
Published: 10 May 2018
.... Thouret; A. M. Thompson; T. Trickl; E. Weatherhead; C. Wespes; H. M. Worden; C. Vigouroux; X. Xu; G. Zeng; J. Ziemke; Detlev Helmig; Alastair Lewis The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the...
Abstract
The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21 st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60°N–60°S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 27.
Published: 06 April 2018
... Feng; Haoye Tang; Kazuhiko Kobayashi; Pierre Sicard; Sverre Solberg; Giacomo Gerosa; Detlev Helmig, Ph.D.; Alastair Lewis Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone...
Abstract
Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 10.
Published: 31 January 2018
.... Saiz-Lopez; M. G. Schultz; M. T. Woodhouse; G. Zeng; Detlev Helmig; Alastair Lewis The goal of the Tropospheric Ozone Assessment Report (TOAR) is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of...
Abstract
The goal of the Tropospheric Ozone Assessment Report (TOAR) is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of observations provides significant information on the spatial and temporal distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric chemistry models to synthesize our understanding of the processes and variables that control tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations and allow us to make projections of future tropospheric ozone and trace gas distributions for different anthropogenic or natural perturbations. This paper assesses the skill of current-generation global atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, variability, and trends. Drawing upon the results of recent international multi-model intercomparisons and using a range of model evaluation techniques, we demonstrate that global chemistry models are broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, models are consistently biased high in the northern hemisphere and biased low in the southern hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that define the longer term trends in tropospheric ozone as derived from some background sites. When the models compare unfavorably against observations, we discuss the potential causes of model biases and propose directions for future developments, including improved evaluations that may be able to better diagnose the root cause of the model-observation disparity. Overall, model results should be approached critically, including determining whether the model performance is acceptable for the problem being addressed, whether biases can be tolerated or corrected, whether the model is appropriately constituted, and whether there is a way to satisfactorily quantify the uncertainty.
Includes: Supplementary data
Journal Articles
Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations
Elementa: Science of the Anthropocene (2017) 5: 58.
Published: 18 October 2017
... Weili; Rolf Weller; Xu Xiaobin; Likun Xue; Ma Zhiqiang; Michael E. Chang; Alastair Lewis In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A...
Abstract
In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world’s largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2017) 5: 50.
Published: 07 September 2017
...Kai-Lan Chang; Irina Petropavlovskikh; Owen R. Cooper; Martin G. Schultz; Tao Wang; Detlev Helmig; Alastair Lewis Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide...
Abstract
Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone’s global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April–September) 2000–2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more sophisticated statistical approach.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2016) 4: 000129.
Published: 30 September 2016
...-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. tropospheric ozone diurnal variation Ozone (O 3 ) is a trace gas of...
Abstract
Ozone is generally assumed to have weak diurnal variations in the free troposphere due to lower production rates than in the boundary layer, in addition to a much lower NO titration and the absence of dry deposition at the surface. However, this hypothesis has not been proven due to a lack of high frequency observations at multiple times per day. For the first time, we take benefit from the frequent O 3 vertical profiles measured above Frankfurt in the framework of the MOZAIC-IAGOS program to investigate the diurnal variations of O 3 mixing ratios at multiple pressure levels throughout the troposphere. With about 21,000 aircraft profiles between 1994 and 2012 (98 per month on average), distributed throughout the day, this is the only dataset that can allow such a study. As expected, strong diurnal variations are observed close to the surface, in particular during spring and summer (enhanced photochemistry and surface deposition). Higher in altitude, our observations show a decrease of the diurnal cycle, with no diurnal cycle discernible above 750 hPa, whatever the season. Similar results are observed for the different percentiles of the O 3 distribution (5 th , 25 th , 50 th , 75 th , 95 th ). An insight of the changes of the diurnal cycles between 1994–2003 and 2004–2012 is also given. We found higher O 3 mixing ratios during the latter period, particularly on the lowest pressure levels, despite lower mixing ratios during summer.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2014) 2: 000029.
Published: 10 July 2014
...O. R. Cooper; D. D. Parrish; J. Ziemke; N. V. Balashov; M. Cupeiro; I. E. Galbally; S. Gilge; L. Horowitz; N. R. Jensen; J.-F. Lamarque; V. Naik; S. J. Oltmans; J. Schwab; D. T. Shindell; A. M. Thompson; V. Thouret; Y. Wang; R. M. Zbinden; Detlev Helmig; Paul Palmer Tropospheric ozone plays a major...
Abstract
Tropospheric ozone plays a major role in Earth’s atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone’s abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone’s global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.
Includes: Supplementary data