Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Topics
Date
Availability
1-2 of 2
Keywords: Enrichment factor
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 15.
Published: 13 February 2018
... permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/ . SML Solar radiation fluorescent dissolved organic matter BIX HIX Enrichment factor The sea surface microlayer...
Abstract
We investigated the influence of solar radiation on biogeochemical parameters of the sea surface microlayer (SML), including the spectroscopic composition of FDOM, and biotic and abiotic parameters. We calculated the humification index, biological index, and recently produced material index from the ultraviolet spectra to characterize the dynamic environment of the SML. The humification index ranged from 4 to 14 in the SML and 14 to 22 in underlying water (ULW). An inverse relation for this index as a function of solar radiation was observed, indicating photochemical decomposition of complex molecules present in fluorescent dissolved organic matter (FDOM). The biological index (along Leg 2) ranged from 1.0 to 2.0 for the SML and 1.0 to 1.5 for ULW. The index for recently produced material ranged from 0.25 to 0.8 for the SML and 0.5 to 1.0 for ULW. The FDOM enrichment process of the SML was influenced by the photochemical decomposition of highly aromatic-like fluorophores, as indicated by the calculated indices. Fluorescence intensity increased for humic C peaks (>0.5 Raman units) in the North Sea samples and for humic M peaks (>1.0 Raman units) for Jade Bay. Spearman analysis for FDOM enrichment in the SML as a function of PAR (for Leg 2) showed a weak positive correlation (Rho = 0.676, n = 11, p = 0.022). Abundance of small photoautotrophic cells (Rho = 0.782, n = 11, p = 0.045) and of bacteria (Rho = 0.746, n = 11, p = 0.0082) also showed a positive correlation as a function of PAR. Overall, we found positive trends between the intensity of available light and the response of the constituents within the SML, highlighting the role of the surface microlayer as a distinctive habitat characterized by unique photochemical processes.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2017) 5: 35.
Published: 30 June 2017
... on this transfer is not fully understood. This work presents dissolved and particulate organic carbon (DOC, POC) concentrations, their enrichment factors in the sea surface microlayer (SML), and equivalent measurements in marine aerosol particles across the Atlantic Ocean. DOC concentrations averaged...
Abstract
The export of organic matter from ocean to atmosphere represents a substantial carbon flux in the Earth system, yet the impact of environmental drivers on this transfer is not fully understood. This work presents dissolved and particulate organic carbon (DOC, POC) concentrations, their enrichment factors in the sea surface microlayer (SML), and equivalent measurements in marine aerosol particles across the Atlantic Ocean. DOC concentrations averaged 161 ± 139 µmol L –1 (n = 78) in bulk seawater and 225 ± 175 µmol L –1 (n = 79) in the SML; POC concentrations averaged 13 ± 11 µmol L –1 (n = 80) and 17 ± 10 µmol L –1 (n = 80), respectively. High DOC and POC enrichment factors were observed when samples had low concentrations, and lower enrichments when concentrations were high. The impacts of wind speed and chlorophyll-a levels on concentrations and enrichment of DOC and POC in seawater were insignificant. In ambient submicron marine aerosol particles the concentration of water-soluble organic carbon was approximately 0.2 µg m –3 . Water-insoluble organic carbon concentrations varied between 0.01 and 0.9 µg m –3 , with highest concentrations observed when chlorophyll-a concentrations were high. Concerted measurements of bulk seawater, the SML and aerosol particles enabled calculation of enrichment factors of organic carbon in submicron marine ambient aerosols, which ranged from 10 3 to 10 4 during periods of low chlorophyll-a concentrations and up to 10 5 when chlorophyll-a levels were high. The results suggest that elevated local biological activity enhances the enrichment of marine-sourced organic carbon on aerosol particles. However, implementation of the results in source functions based on wind speed and chlorophyll-a concentrations underestimated the organic fraction at low biological activity by about 30%. There may be additional atmospheric and oceanic parameters to consider for accurately predicting organic fractions on aerosol particles.
Includes: Supplementary data