Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Date
Availability
1-20 of 47
Ecology and Earth Systems
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 00093.
Published: 05 March 2021
Abstract
The pyrite ores are strategic industrial resources which generally serve as raw material for producing sulfuric acid. However, during the mining and industrial processing activities, associated toxic elements of cadmium (Cd) and lead (Pb) could be released into the surroundings, posing a significant threat to local environment and human health. In this study, the Institute for Reference Materials and Measurement (IRMM) sequential extraction scheme was used to investigate the geochemical fractionation of Cd and Pb in pyrite ores from a mining area located in Yunfu, western Guangdong, China. The results showed that most of Cd and Pb (>90%) were predominantly found in the geochemically mobile fractions, indicating that Cd and Pb were readily bioaccessible thus easily assimilated and accumulated by organisms. FESEM-EDS results showed that the studied pyrite ores were mainly composed of O, S, and Fe, while the XRD characterizations suggested that FeS 2 and SiO 2 were the major minerals. The high-resolution transmission electron microscope and element mapping characterization further confirmed that FeS 2 was the main mineral of pyrite ores which contained relatively enriched toxic heavy metals (e.g., Pb and Cd). The findings highlight that an extremely large amount of geochemically mobile heavy metals can be released into the environmental media during the mining and utilization processes of pyrite ores based on IRMM sequential extraction protocol. Therefore, proper countermeasures against environmental risks of utilizing pyrite ores should be taken to mitigate the impacts on local ecosystem and human health.
Journal Articles
Liliane Stédile de Matos, Anne Sthephane Arrolho Silva Correa, Solange Aparecida Arrolho da Silva, Claumir Cesar Muniz, Aurea Regina Alves Ignacio
Elementa: Science of the Anthropocene (2021) 9 (1): 020.
Published: 01 March 2021
Abstract
Ingestion of fish is considered the main pathway of human exposure to methylmercury (MeHg), particularly for riverside populations, where fish is the main source of protein. The objective of this study was to estimate concentration of MeHg based on total concentration of mercury in muscles of three species of carnivorous fish: Boulengerella cuvieri (bicuda), Serrasalmus rhombeus (piranha), and Hydrolycus armatus (cachorra), collected from Teles Pires River, Brazil. Furthermore, we calculated human health risk related to MeHg contamination caused by fish consumption. Fish were collected in 20 field campaigns from December 2011 to September 2016 at Teles Pires River, in area of influence of Colíder hydroelectric plant. Risk index (RI) related to ingestion of MeHg through fish intake was calculated considering that MeHg corresponds to around 90% of mercury in fish. There were no significant differences in average mercury concentration between all species: S. rhombeus (0.304 mg/kg –1 ), H. armatus (0.229 mg/kg –1 ), and B. cuvieri (0.199 mg/kg –1 ). RI calculated for sensitive groups (lactating women, breastfeeding infants and children) and RI calculated for general population presented average values, suggesting adverse health effects. This first assessment on MeHg and human exposure to people from Teles Pires River area through fish consumption suggests that mercury concentrations might be posing health adverse effects on people of this sensitive group. Further studies involving more fish specimens and considering fish biological factors are needed to fully understand health risks of mercury exposure to humans in this region.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 00124.
Published: 18 February 2021
Abstract
Global changes such as increased drought and atmospheric nitrogen deposition perturb both the microbial and plant communities that mediate terrestrial ecosystem functioning. However, few studies consider how microbial responses to global changes may be influenced by interactions with plant communities. To begin to address the role of microbial–plant interactions, we tested the hypothesis that the response of microbial communities to global change depends on the plant community. We characterized bacterial and fungal communities from 395 plant litter samples taken from the Loma Ridge Global Change Experiment, a decade-long global change experiment in Southern California that manipulates rainfall and nitrogen levels across two adjacent ecosystems, a grassland and a coastal sage scrubland. The differences in bacterial and fungal composition between ecosystems paralleled distinctions in plant community composition. In addition to the direct main effects, the global change treatments altered microbial composition in an ecosystem-dependent manner, in support of our hypothesis. The interaction between the drought treatment and ecosystem explained nearly 5% of the variation in bacterial community composition, similar to the variation explained by the ecosystem-independent effects of drought. Unexpectedly, we found that the main effect of drought was approximately four times as strong on bacterial composition as that of nitrogen addition, which did not alter fungal or plant composition. Overall, the findings underscore the importance of considering plant–microbe interactions when considering the transferability of the results of global change experiments across ecosystems.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 00116.
Published: 18 February 2021
Abstract
High latitude ecosystems are characterized by cold soils and long winters, with much of their biogeochemistry directly or indirectly controlled by temperature. Climate warming has led to an expansion of shrubby plant communities across tussock tundra, but whether these clear aboveground shifts correspond to changes in the microbial community belowground remains less certain. Using bromodeoxyuridine to label growing cells, we evaluated how total and actively growing bacterial communities varied throughout a year and following 22 years of passive summer warming. We found that changes in total and actively growing bacterial community structures were correlated with edaphic factors and time point sampled, but were unaffected by warming. The aboveground plant community had become more shrub-dominated with warming at this site, and so our results indicate that belowground bacterial communities did not track changes in the aboveground plant community. As such, studies that have used space-for-time methods to predict how increased shrub cover has altered bacterial communities may not be representative of how the microbial community will be affected by in situ changes in the plant community as the Arctic continues to warm.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 084.
Published: 08 February 2021
Abstract
Tidal marshes are important recycling areas for biogenic silica (BSi) and macro- and microelements at the land–sea interface and are key locations for examining the decomposition process of wetland plant litter. In this study, in situ decomposition experiments were conducted with Phragmites australis , Cyperus malaccensis , and Spartina alterniflora in the Min River estuary wetland. Litterbags of 0.2-mm mesh size were used to evaluate the litter decomposition process and residual values of BSi and macro- and microelements, including C, N, Cr, Cu, Cd, Zn, Pb, Al, Mn, and Fe over 520 days. The litter decomposition rate significantly differed among species in the following order: C. malaccensis (0.005 d –1 ) > S. alterniflora (0.004 d –1 ) > P. australis (0.003 d –1 ) with BSi release rates of 98.64%, 96.75%, and 97.23%, respectively. Although there were net releases of BSi, C, and N from the three litter species, continuous decrease in the BSi/(C, N) ratio indicated that BSi was removed from the litter much faster than C and N. The accumulation index results showed that Cu, Pb, Al, and Fe were net-accumulated in the litter, whereas Cd, Mn, Cr, and Zn were predominantly released during litter decay. Pearson’s correlation analysis results showed that the amounts of N, Cu, Cd, Pb, Al, and Fe in the litter restrained BSi release with a significant negative correlation. These findings in the Min River estuary have important implications for geochemical cycles within wetland systems and the transport processes of potential nutrients out of the system.
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 090.
Published: 05 February 2021
Abstract
Agricultural practices such as fertilization considerably influence soil greenhouse gas fluxes. However, the effects of fertilization on greenhouse gases fluxes remain unclear in tea soil when soil nitrogen is low. In the present study, soil CO 2 and CH 4 fluxes under various fertilization treatments in tea soil were investigated during a 50-day period. The experiment consisted of five treatments: no fertilizer (CK), single nitrogen (urea, N), single oilseed rape cake fertilizer (R), nitrogen + cake fertilizer (2:1, NR1), and nitrogen + cake fertilizer (1:2, NR2). The fertilization proportion of NR1 and NR2 was determined by the nitrogen content of nitrogen fertilizer and cake fertilizer. The results revealed that the single application of nitrogen had no significant effect on soil CO 2 flux. However, the addition of cake fertilizer significantly increased CO 2 emissions through enhanced soil microbial biomass carbon (MBC). Additionally, CO 2 emissions were directly proportional to the amount of carbon (C) in the fertilizer. All treatments were minor sinks for CH 4 except for the treatment NR1. Specifically, the cumulative CH 4 fluxes of NR1 and NR2 were significantly higher than rest of the three treatments, which implies that application of urea and oilseed rape cake reduced the capability of CH 4 oxidation in tea soil. Structural equation models indicated that soil CO 2 flux is significantly and positively correlated with soil dissolved organic carbon, MBC and soil pH, while mineral nitrogen content was the main factor affecting CH 4 flux. Overall, the application of oilseed rape cake increased the oxidation of CH 4 and promoted soil C sequestration but inevitably increased the soil CO 2 emissions.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 00071.
Published: 29 January 2021
Abstract
Human skeletal morphology is a dynamic system affected by both physiological and environmental factors, due to the functional adaptation and remodeling responses of bones. To further explore the adaptation of bone to the environment and the consequent subsistence strategies determined by the diverse natural contexts in the Anthropocene, this study presents a comparative study on the tibiae of seven ancient populations located in different regions of East Asia. Through the analysis of the tibial shaft morphology, a comparative analysis between the populations and genders was conducted to evaluate the differences in external morphology and sexual division of labor. The cnemic indices of the tibial shaft were selected to quantify the external shape. Results showed that different populations had different tibial morphology. Among males, those of Jinggouzi had the flattest tibia while those of Changle had the widest tibia. Among the females, females of Hanben had the flattest tibia, whereas tibia from females of Shiqiao, Changle, and Yinxu were among the widest. The sexual dimorphism was relatively larger in Shiqiao and Jinggouzi and smaller in Tuchengzi and Changle. Through a combination of previous archaeological findings, historical records, and ethnography of the aboriginal Taiwanese, it is concluded that the terrain and ecological environments laid basis for varied subsistence strategies. In addition, the mobility and social labor division under a particular subsistence strategy further contributed to the adaptation of the lower limb morphology to its context. The comparative analysis provides further insight on habitual activities, terrestrial mobility patterns, and subsistence strategies of the populations, which lived in different environmental contexts during the Bronze Age and early Iron Age, thus demonstrating the diverse interactions between human populations and natural environment in the Anthropocene.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 00092.
Published: 29 January 2021
Abstract
Thallium (Tl) is a highly toxic trace metal widely distributed in water environments, which may threaten the water quality and aquatic organisms at excessive levels due to increased anthropogenic activities. This study investigated the changes in microbial communities of intestines and organs of zebrafish. The toxic response assessments include intestinal microbiota composition and the histopathology of zebrafish’s gill and liver tissues under exposure of Tl at environmental-relevant levels. The results support that the intestinal microbial community of zebrafish greatly changed under a relatively high Tl concentration (1000 ng/L). A significant increase of pathogenic intestinal bacteria such as Mycobaterium in the intestine of zebrafish exposed at Tl levels over 500 ng/L was found. Additionally, the gill and liver tissues displayed different degrees of damage under Tl exposure, which possibly leads to mating behavior changes and death of zebrafish. The results indicate that low doses of Tl in the aquatic environment induce high toxicity on zebrafish and may pose pathological threats to the gill and liver of zebrafish. In addition, Tl exposure gives rise to increasing abundance of pathogenic intestinal bacteria and changes the community structure of intestinal microorganisms.
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 068.
Published: 21 January 2021
Abstract
During the past century, many lacustrine environments have changed substantially at the ecosystem level as a result of anthropogenic activities. In this study, the distributions of n-alkane homologues, carbon isotopes (δ 13 C org ), organic carbon, and the C/N atomic ratio in two sediment cores from Fuxian Lake (Yunnan, southwest China) are used to elucidate the anthropogenic impacts on this deep, oligotrophic, freshwater lake. The carbon preference index (CPI) of long-chain components, average chain length (ACL), proportion of aquatic macrophytes (Paq), and terrigenous/aquatic ratios (TAR) show different temporal patterns that reflect variations in biological production. Notably, the n-alkane homologues are shown to be more sensitive to environmental changes than δ 13 C org and the C/N ratio. Prior to the 1950s, minor variations in the sedimentary geochemical record were likely caused by climate changes, and they represent a natural stage of lake evolution. The onset of cultural eutrophication in Fuxian Lake occurred in the 1950s, when the n-alkane proxies collectively exhibited high-amplitude fluctuations but overall decreasing trends that coincided with population growth and related increases in land-use pressure. In the 21st century, Fuxian Lake has become even more eutrophic in response to human activities, as indicated by sharp increases in C/N ratio, Paq, δ 13 C org , ACL, CPI, and TAR. Our findings provide robust molecular sedimentary evidence confirming that the environmental evolution of lakes in the Yunnan–Guizhou Plateau over the past century was closely associated with enhanced anthropogenic activities.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2021) 9 (1): 431.
Published: 13 January 2021
Abstract
It is common in the literature to not consider all sources of uncertainty simultaneously: input, structural, parameter, and observed calibration data uncertainty, particularly in data-sparse environments due to data limitations and the complexities that arise from data limitations when propagating uncertainty downstream in a modelling chain. This paper presents results for the propagation of multiple sources of uncertainty towards the estimation of streamflow uncertainty in a data-sparse environment. Uncertainty sources are separated to ensure low likelihood uncertainty distribution tails are not rejected to examine the interaction of sources of uncertainty. Three daily resolution hydrologic models (HYPE, WATFLOOD, and HEC-HMS), forced with three precipitation ensemble realizations, generated from five gridded climate datasets, for the 1981–2010 period were used to examine the effects of cumulative propagation of uncertainty in the Lower Nelson River Basin as part of the BaySys project. Selected behavioral models produced an average range of Kling-Gupta Efficiency scores of 0.79–0.68. Two alternative methods for behavioral model selection were also considered that ingest streamflow uncertainty. Structural and parameter uncertainty was found to be insufficient, individually, by producing some uncertainty envelopes narrower than observed streamflow uncertainty. Combined structural and parameter uncertainty, propagated to simulated streamflow, often enveloped nearly 100% of observed streamflow values, however, high and low flow years were generally a source for lower reliabilities in simulated results. Including all sources of uncertainty generated simulated uncertainty bounds that enveloped most of the observed flow uncertainty bounds including improvement for high and low flow years across all gauges although the uncertainty bounds generated were of low likelihood. Overall, accounting for each source of uncertainty added value to the simulated uncertainty bounds when compared to hydrometric uncertainty; the inclusion of hydrometric uncertainty was key for identifying the improvements to simulated ensembles.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2019) 7: 46.
Published: 18 November 2019
Abstract
It is likely that half of the urban areas that will exist in 2050 have not yet been designed and built. This provides tremendous opportunities for enhancing urban sustainability, and using “nature in cities” is critical to more resilient solutions to urban challenges. Terms for “urban nature” include Green Infrastructure (GI), Green-Blue Infrastructure (GBI), Urban Green Space (UGS), and Nature-Based Solutions (NBS). These terms, and the concepts they represent, are incomplete because they tend to reduce the importance of non-terrestrial ecological features in cities. We argue that the concept of Urban Ecological Infrastructure (UEI), which came from a 2013 forum held in Beijing and from several subsequent 2017 publications, is a more inclusive alternative. In this paper we refine the 2013 definition of UEI and link the concept more directly to urban ecosystem services. In our refined definition, UEI comprises all parts of a city that support ecological structures and functions, as well as the ecosystem services provided by UEI that directly affect human outcomes and wellbeing. UEI often includes aspects of the built environment, and we discuss examples of this “hybrid infrastructure”. We distinguish terrestrial, aquatic, and wetland UEI because each type provides different ecosystem services. We present several examples of both “accidental” UEI and UEI that was explicitly designed and managed, with an emphasis on wetland UEI because these ecotonal ecosystems are uniquely both terrestrial and aquatic. We show how both accidental and planned UEI produces unexpected ecosystem services, which justifies recognizing and maintaining both purposeful and serendipitous types of UEI in cities. Finally, we posit that by incorporating both “ecological” and “infrastructure”, UEI also helps to bridge urban scientists and urban practitioners in a more transdisciplinary partnership to build more resilient and sustainable cities.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2019) 7: 42.
Published: 17 October 2019
Abstract
Although the ecosystem transforming impact of the invasive dreissenid mussels has been widely reported in short-to-mid time scale studies, little is known about the contribution of the spent shells to sediments accumulating on the lake bottom. The question whether the shell production significantly reduces the lifespan of the lake by increasing sedimentation rate is particularly interesting in those shallow lakes where the calcium supply is sufficient to maintain the high mussel biomass production permanently, and where the alkaline water does not favor shell dissolution. Lake Balaton, a large calcareous, shallow lake in Central Europe invaded by dreissenids ( Dreissena polymorpha, Dreissena rostriformis bugensis ), provides an ideal testing ground for this scenario. Therefore, we made calculations based on recent population abundance datasets (2000–2018), estimated the whole habitable, hard surface coastline and the muddy bottom of the pelagic area which is also gradually becoming inhabited by D. r. bugensis , using high resolution aerial photographs and analyzing seismic sections. We created four scenarios: (1) if no dreissenids are present (applying basic sedimentation rate); (2) if D. r. bugensis had not been introduced to the lake (only D. polymorpha ); (3) if D. r. bugensis occupies the hard surfaces of the coastline (the current dominant situation); (4) if D. r. bugensis colonizes the entire lake bottom (a probable future model). Different sedimentation rates obtained from the literature were used to model the filling of Lake Balaton. The shell production of the new invader, D. r. bugensis can shorten the lake’s lifespan by one to two-thirds, depending on the model, and whether the mussel density currently observed at the shoreline is extended to the whole lake bottom. Attention is called to shallow calcareous lakes with low pre-invasion sedimentation rates in which the shell contribution of invasive mollusks has the potential to shorten lifespan.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2019) 7: 27.
Published: 15 July 2019
Abstract
Despite the increasing influence of human activities on water resources in our current Anthropocene era, the impacts of these activities on the duration, rate and timing of the recovery of drought events, known as the drought termination phase, remain unknown. Here, we present the first assessment of how different human activities (i.e. water abstractions, reservoirs, water transfers) affect drought termination. Six case studies in Europe were used to analyse the human influence on streamflow drought termination characteristics. For all case studies, we compared the drought and drought termination characteristics derived from a human-influenced time series of streamflow (observation data) and a naturalised time series (modelled data) for the same period. Overall, results clearly demonstrate the influence of human activities on drought terminations in all the studied catchments. Groundwater abstractions, reservoirs and mixed influences were all found to increase the average duration of drought termination, whereas water transfers into the catchment decreased drought termination duration. Results also show that average drought termination rates increased in all case studies due to the human influence. Furthermore, start and end months of the termination phase were more skewed to certain months in human-influenced data than in the naturalised situation. Future research could extend this new knowledge by looking to add further case studies and covering different human activities to gain a wider understanding on how human actions modify hydrological droughts and their recovery. Furthering this work could also help to improve the forecasting of drought recovery in the Anthropocene, which is important for informing drought management decisions.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2019) 7: 2.
Published: 02 January 2019
Abstract
Since 1981, water allocation in Chile has been based on a water use rights (WURs) market, with limited regulatory and supervisory mechanisms. The volume to be granted as permanent and eventual WURs is calculated from streamflow records, if stream gauge data are available, or from hydrologic parameter transfer from gauged to ungauged catchments, usually with less than 50 years of record. To test the performance of this allocation system, while analyzing the long-term natural variability in water resources, we investigated a 400 year-long (1590–2015) tree-ring reconstruction of runoff and historical water rights for Perquilauquén at Quella catchment, a tributary to the Maule River in Central Chile (35°S–36°30S). Furthermore, we assess how the current legislation would perform under a projected climate scenario, based on historical climate simulations of runoff calibrated against observed data, and future projections. Our analyses indicate that the allocation methodology currently applied by the Water Authority in Chile is very sensitive to the time window of data used, which leads to an underestimation of variability and long-term trends. According to the WURs database provided by the Chilean Water Directorate, WURs at Perquilauquén at Quella are already over-allocated. Considering regional climate projections, this condition will be exacerbated in the future. Furthermore, serious problems regarding the access and quality of information on already-granted WURs and actual water usage have been diagnosed, which further encumber environmental strategies to deal with and adapt to climate change. We emphasize the urgent need for a review and revision of current water allocation methodologies and water law in Chile, which are not concordant with the dynamics and non-stationarity of hydrological processes. Water scarcity and water governance are two of the key issues to be faced by Chile in the Anthropocene.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 74.
Published: 07 December 2018
Abstract
The socio-ecological sensitivity to water deficits makes Chile highly vulnerable to global change. New evidence of a multi-decadal drying trend and the impacts of a persistent drought that since 2010 has affected several regions of the country, reinforce the need for clear diagnoses of the hydro-climate changes in Chile. Based on the analysis of long-term records (50+ years) of precipitation and streamflow, we confirm a tendency toward a dryer condition in central-southern Chile (30–48°S). We describe the geographical and seasonal character of this trend, as well as the associated large-scale circulation patterns. When a large ensemble of climate model simulations is contrasted to observations, anthropogenic forcing appears as the leading factor of precipitation change. In addition to a drying trend driven by greenhouse gas forcing in all seasons, our results indicate that the Antarctic stratospheric ozone depletion has played a major role in the summer rainfall decline. Although average model results agree well with the drying trend’s seasonal character, the observed change magnitude is two to three times larger than that simulated, indicating a potential underestimation of future projections for this region. Under present-day carbon emission rates, the drying pathway in Chile will likely prevail during the next decades, although the summer signal should weaken as a result of the gradual ozone layer recovery. The trends and scenarios shown here pose substantial stress on Chilean society and its institutions, and call for urgent action regarding adaptation measures.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 70.
Published: 23 November 2018
Abstract
Since the onset of hydraulic gold mining in California’s Sierra Nevada foothills in 1852, the environmental damage caused by displacement and storage of hydraulic mining sediment (HMS) has been a significant ecological problem downstream. Large volumes of mercury-laden HMS from the Yuba River watershed were deposited within the river corridor, creating the anthropogenic Yuba Fan. However, there are outstanding uncertainties about how much HMS is still contained within this fan. To quantify the deep storage of HMS in the Yuba Fan, we analyzed mercury concentrations of sediment samples collected from borings and outcrops at multiple depths. The mercury concentrations served as chemostratigraphic markers to identify the contacts between the HMS and underlying pre-mining deposits. The HMS had mercury concentrations at least ten-fold higher than pre-mining deposits. Analysis of the lower Yuba Fan’s volume suggests that approximately 8.1 × 10 7 m 3 of HMS was deposited within the study area between 1852 and 1999, representing ~32% of the original Yuba Fan delivered by 19 th Century hydraulic gold mining. Our estimate of the mercury mass contained within this region is 6.7 × 10 3 kg, which is several orders of magnitude smaller than what was estimated to have been lost to the mining process. We suggest that this discrepancy is likely due to a combination of missing (yet to be found) mercury masses stored upstream, overestimated losses during mining, and high delivery of mercury to the lowland Sacramento Valley and to the San Francisco Bay-Delta system, where it poses a great risk to sensitive ecosystems.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 62.
Published: 12 September 2018
Abstract
The exposure of freshwater-dependent coastal ecosystems to saltwater is a present-day impact of climate and land-use changes in many coastal regions, with the potential to harm freshwater and terrestrial biota, alter biogeochemical cycles and reduce agricultural yields. Land-use activities associated with artificial drainage infrastructure (canals, ditches, and drains) could exacerbate saltwater exposure. However, studies assessing the effects of artificial drainage on the vulnerability of coastal landscapes to saltwater exposure are lacking. We examined the extent to which artificial drainage infrastructure has altered the potential for saltwater intrusion in the coastal plain of eastern North Carolina. Regional spatial analyses demonstrate that artificial drainages not only lower the overall elevation in coastal landscapes, but they also alter the routing and concentration of hydrological flows. Together, these factors have the potential to increase the total proportion of the landscape vulnerable to saltwater intrusion, not only in areas adjacent to drainage infrastructure but also in places where no artificial drainages exist due to large scale effects of flow rerouting. Among all land cover types in eastern North Carolina, wetlands are most vulnerable to saltwater exposure. Droughts and coastal storms associated with climate change potentially exacerbate vulnerability to saltwater facilitated by artificial drainage.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 59.
Published: 20 August 2018
Abstract
Coastal upwelling systems off the coasts of Peru and Chile are among the most productive marine ecosystems in the world, sustaining a significant percentage of global primary production and fishery yields. Seasonal and interannual variability in these systems has been relatively well documented; however, an understanding of recent trends and the influence of climate change on marine processes such as surface cooling and primary productivity is limited. This study presents evidence that winds favorable to upwelling have increased within the southern boundary of the Humboldt Current System (35°–42°S) in recent decades. This trend is consistent with a poleward movement of the influence of the Southeast Pacific Anticyclone and resembles the spatial pattern projected by Global Circulation Models for warming scenarios. Chlorophyll a levels (from 2002 to present) determined by satellite and field-based time-series observations show a positive trend, mainly in austral spring–summer (December–January–February), potentially explained by observed increments in nutrient flux towards surface waters and photosynthetically active radiation. Both parameters appear to respond to alongshore wind stress and cloud cover in the latitudinal range of 35°S to 42°S. In addition, net annual deepening of the mixed layer depth is estimated using density and temperature profiles. Changes in this depth are associated with increasing winds and may explain cooler, more saline, and more productive surface waters, with the latter potentially causing fluctuations in dissolved oxygen and other gases, such as nitrous oxide, sensitive to changes in oxygenation. We argue that these recent changes represent, at least in part, a regional manifestation of the Anthropocene along the Chilean coast.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 33.
Published: 18 April 2018
Abstract
Fossil fuel use associated with scientific activities in the Taylor Valley, Antarctic has been examined to determine the fluxes of particulate organic and elemental carbon and nitrogen as well as NO x for the 2015–2016 austral summer field season. These carbon and nitrogen fluxes are compared to our previously published calculations for the 1997–1998 austral summer. In addition, we compile fossil fuel usage and resulting C and N fluxes from the major field camp in Taylor Valley, Lake Hoare Camp (LHC) from the late 1990’s through 2017. In general, the annual fluxes do vary from year to year, but there is no significant trend, at least during the primary summer field season. There is indication that increasing the length of scientific operations does increase the C and N inputs via fossil fuel burning. This works supports our original results demonstrating that over long periods of time the anthropogenic flux of N from local fossil fuel burning could become quantitatively important in the region. Although the particulate C fluxes remain very low, the recent finding of black carbon in the Taylor Valley landscape indicates more on-going monitoring of the source of this material is merited.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 31.
Published: 12 April 2018
Abstract
Acid mine drainage (AMD) discharge has severe, long lasting impacts on water quality and stream ecology in affected watersheds due in part to the dynamic relationship between toxic metals (e.g. Al, Mn, and Cu) and Fe(III) oxy-hydroxides. Localized areas of biogeochemical activity that can mediate mineralogical transformation changes and cause metal release are potentially linked to stream geomorphology. This relationship has not been previously considered with respect to potential longitudinal variation within an impacted stream. The current work aims to determine how Fe(III) (oxy)-hydroxide speciation and distribution, and pore water chemistry in an AMD-impacted streambed, are affected by the presence of two geomorphic structures (a debris dam and step-pool sequence) in an Ohio watershed impacted by historical coal mining. In terms of solid phase mineralogy and geochemistry, in both the tributary and main stem, goethite was the dominant Fe-bearing phase throughout the AMD deposit depth in cores taken upstream of the geomorphic structures, whereas poorly-crystalline phases dominated downstream of the structures, despite the presence of Fe in the reducible fraction. The concentrations and distribution of extractable Al, Mn, and Cu were also different upstream versus downstream of each structure. Pore water Fe and Mn concentrations were higher downstream of the structures than upstream. Strong downward hydraulic gradients were present above the debris dam and in step-pool 1, whereas weaker upward hydraulic gradients were present below the debris dam and in step-pool 2. This work highlights that AMD deposit speciation and distribution, and pore water chemistry, are not spatially uniform within stream reaches, potentially as a result of groundwater-stream exchange-facilitated interactions in the presence of AMD-derived materials.
Includes: Supplementary data