Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-1 of 1
Vasilii V. Petrenko
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Elementa: Science of the Anthropocene (2017) 5: 63.
Published: 07 November 2017
Abstract
We present measurements of CO mole fraction and CO stable isotopes (δ 13 CO and δC 18 O) in air during the winters of 2013–14 and 2014–15 at tall tower sampling sites in and around Indianapolis, USA. A tower located upwind of the city was used to quantitatively remove the background CO signal, allowing for the first unambiguous isotopic characterization of the urban CO source and yielding 13 CO of –27.7 ± 0.5‰ VPDB and C 18 O of 17.7 ± 1.1‰ VSMOW for this source. We use the tower isotope measurements, results from a limited traffic study, as well as atmospheric reaction rates to examine contributions from different sources to the Indianapolis CO budget. Our results are consistent with earlier findings that traffic emissions are the dominant source, suggesting a contribution of 96% or more to the overall Indianapolis wintertime CO emissions. Our results are also consistent with the hypothesis that emissions from a small fraction of vehicles without functional catalytic systems dominate the Indianapolis CO budget.
Includes: Supplementary data