Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-2 of 2
Sharon E. Stammerjohn
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Elementa: Science of the Anthropocene (2015) 3: 000046.
Published: 17 April 2015
Abstract
We report results from a yearlong, moored sediment trap in the Amundsen Sea Polynya (ASP), the first such time series in this remote and productive ecosystem. Results are compared to a long-term (1992–2013) time series from the western Antarctic Peninsula (WAP). The ASP trap was deployed from December 2010 to December 2011 at 350 m depth. We observed two brief, but high flux events, peaking at 8 and 5 mmol C m −2 d −1 in January and December 2011, respectively, with a total annual capture of 315 mmol C m −2 . Both peak fluxes and annual capture exceeded the comparable WAP observations. Like the overlying phytoplankton bloom observed during the cruise in the ASP (December 2010 to January 2011), particle flux was dominated by Phaeocystis antarctica, which produced phytodetrital aggregates. Particles at the start of the bloom were highly depleted in 13 C, indicating their origin in the cold, CO 2 -rich winter waters exposed by retreating sea ice. As the bloom progressed, microscope visualization and stable isotopic composition provided evidence for an increasing contribution by zooplankton fecal material. Incubation experiments and zooplankton observations suggested that fecal pellet production likely contributed 10–40% of the total flux during the first flux event, and could be very high during episodic krill swarms. Independent estimates of export from the surface (100 m) were about 5–10 times that captured in the trap at 350 m. Estimated bacterial respiration was sufficient to account for much of the decline in the flux between 50 and 350 m, whereas zooplankton respiration was much lower. The ASP system appears to export only a small fraction of its production deeper than 350 m within the polynya region. The export efficiency was comparable to other polar regions where phytoplankton blooms were not dominated by diatoms.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2015) 3: 000043.
Published: 08 April 2015
Abstract
To evaluate what drives phytoplankton photosynthesis rates in the Amundsen Sea Polynya (ASP), Antarctica, during the spring bloom, we studied phytoplankton biomass, photosynthesis rates, and water column productivity during a bloom of Phaeocystis antarctica (Haptophyceae) and tested effects of iron (Fe) and light availability on these parameters in bioassay experiments in deck incubators. Phytoplankton biomass and productivity were highest (20 µg chlorophyll a L −1 and 6.5 g C m −2 d −1 ) in the central ASP where sea ice melt water and surface warming enhanced stratification, reducing mixed layer depth and increasing light availability. In contrast, maximum photosynthesis rate ( P * max ), initial light-limited slope of the photosynthesis–irradiance curve (α * ), and maximum photochemical efficiency of photosystem II ( F v /F m ) were highest in the southern ASP near the potential Fe sources of the Dotson and Getz ice shelves. In the central ASP, P * max , α * , and F v /F m were all lower. Fe addition increased phytoplankton growth rates in three of twelve incubations, and at a significant level when all experiments were analyzed together, indicating Fe availability may be rate-limiting for phytoplankton growth in several regions of the ASP early in the season during build-up of the spring bloom. Moreover, Fe addition increased P * max , α * , and F v /F m in almost all experiments when compared to unamended controls. Incubation under high light also increased P * max , but decreased F v /F m and α * when compared to low light incubation. These results indicate that the lower values for P * max , α * , and F v /F m in the central ASP, compared to regions close to the ice shelves, are constrained by lower Fe availability rather than light availability. Our study suggests that higher Fe availability (e.g., from higher melt rates of ice shelves) would increase photosynthesis rates in the central ASP and potentially increase water column productivity 1.7-fold, making the ASP even more productive than it is today.
Includes: Supplementary data