Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-3 of 3
Julie E. Keister, Ph.D
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Elementa: Science of the Anthropocene (2019) 7: 1.
Published: 02 January 2019
Abstract
Arctic cod ( Boreogadus saida ) is the dominant pelagic fish in Arctic seas and a staple food of many arctic predators including several seabird species. Marginal ice zones are known as important feeding locations for seabirds. The hypothesis that thick-billed murre ( Uria lomvia ), northern fulmar ( Fulmarus glacialis ) and black-legged kittiwake ( Rissa tridactyla ) congregate in areas of high Arctic cod food resource and low ice concentration was tested at different spatial scales. Arctic cod biomass was estimated by hydroacoustics as a resource proxy, and seabirds were counted and sampled for stomach analysis along eight longitudinal transects across the marginal ice zone in southern Baffin Bay in June–July 2016. With increasing length, the epipelagic age-0 Arctic cod migrated from open waters to ice-covered areas. Subsequently, age-1 and age-2 Arctic cod tended to concentrate in a subsurface layer (40–100 m) within the epipelagic layer. Arctic cod 5.7–16.1 cm long (late age-0 to age-5) were the main fish prey of the three seabird species, which preferentially captured age-1 cod (6–11.5 cm). At large spatial scale (western versus eastern Baffin Bay), thick-billed murre, northern fulmar and their Arctic cod resource proxy were generally more abundant on the western ice-covered side of Baffin Bay. No clear spatial match was found, however, when comparing seabird abundances and their food-resource proxy in different ice concentrations across the marginal ice zone or at small scale (5 km). At medium scale (12.5 km), only murre density was influenced positively by its Arctic cod resource. A lack of schooling behavior and a successful strategy to avoid predation by hiding under the ice could explain the absence of any strong spatial match between Arctic cod and its seabird predators at these different scales.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 54.
Published: 23 July 2018
Abstract
Ocean acidification (OA) will have a predominately negative impact on marine animals sensitive to changes in carbonate chemistry. Coastal upwelling regions, such as the Northwest coast of North America, are likely among the first ecosystems to experience the effects of OA as these areas already experience high pH variability and naturally low pH extremes. Over the past decade, pH off the Olympic coast of Washington has declined an order of magnitude faster than predicted by accepted conservative climate change models. Resource managers are concerned about the potential loss of intertidal biodiversity likely to accompany OA, but as of yet, there are little pH sensitivity data available for the vast majority of taxa found on the Olympic coast. The intertidal zone of Olympic National Park is particularly understudied due to its remote wilderness setting, habitat complexity, and exceptional biodiversity. Recently developed methodological approaches address these challenges in determining organism vulnerability by utilizing experimental evidence and expert opinion. Here, we use such an approach to determine intertidal organism sensitivity to pH for over 700 marine invertebrate and algal species found on the Olympic coast. Our results reinforce OA vulnerability paradigms for intertidal taxa that build structures from calcium carbonate, but also introduce knowledge gaps for many understudied species. We furthermore use our assessment to identify how rocky intertidal communities at four long-term monitoring sites on the Olympic coast could be affected by OA given their community composition.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 51.
Published: 16 July 2018
Abstract
Understanding larval bivalve responses to variable regimes of seawater carbonate chemistry requires realistic quantification of physiological stress. Based on a degree-day modeling approach, we developed a new metric, the ocean acidification stress index for shellfish (OASIS), for this purpose. OASIS integrates over the entire larval period the instantaneous stress associated with deviations from published sensitivity thresholds to aragonite saturation state (Ω Ar ) while experiencing variable carbonate chemistry. We measured survival to D-hinge and pre-settlement stage of four Pacific oyster ( Crassostrea gigas ) cohorts with different histories of carbonate chemistry exposure at the Whiskey Creek Hatchery, Netarts Bay, OR, to test the utility of OASIS as a stress metric and document the effects of buffering seawater in mitigating acute and chronic exposure to ocean acidification. Each cohort was divided into four groups and reared under the following conditions: 1) stable, buffered seawater for the entire larval period; 2) stable, buffered seawater for the first 48 hours, then naturally variable, unbuffered seawater; 3) stable, unbuffered seawater for the first 48 hours, then buffered seawater; and 4) stable, unbuffered seawater for the first 48 hours, then naturally variable, unbuffered seawater. Patterns in Netarts Bay carbonate chemistry were dominated by seasonal upwelling at the time of the experimental work, resulting in naturally highly variable Ω Ar for the larvae raised in the unbuffered treatments. Two of the four cohorts showed strongly positive responses to buffering in survival to 48 hours; three of the four, in survival to pre-settlement. OASIS accurately predicted survival for two of the three cohorts tested (the fourth excluded due to other environmental factors), suggesting that this new metric could be used to better understand larval bivalve survival in naturally variable environments. OASIS may also be useful to an array of diverse stakeholders with increasing access to highly resolved temporal measurements of carbonate chemistry.
Includes: Supplementary data