Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-9 of 9
Julie E. Keister
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Elementa: Science of the Anthropocene (2019) 7: 50.
Published: 09 December 2019
Abstract
Studying the distribution of zooplankton in relation to their prey and predators is challenging, especially in situ . Recent developments in underwater imaging enable such fine-scale research. We deployed the Lightframe On-sight Keyspecies Investigation (LOKI) image profiler to study the fine-scale (1 m) vertical distribution of the copepods Calanus hyperboreus and C. glacialis in relation to the subsurface chlorophyll maximum (SCM) at the end of the grazing season in August in the North Water and Nares Strait (Canadian Arctic). The vertical distribution of both species was generally consistent with the predictions of the Predator Avoidance Hypothesis. In the absence of a significant SCM, both copepods remained at depth during the night. In the presence of a significant SCM, copepods remained at depth in daytime and a fraction of the population migrated in the SCM at night. All three profiles where the numerically dominant copepodite stages C4 and C5 of the two species grazed in the SCM at night presented the same intriguing pattern: the abundance of C. hyperboreus peaked in the core of the SCM while that of C. glacialis peaked just above and below the core SCM. These distributions of the same-stage congeners in the SCMs were significantly different. Lipid fullness of copepod individuals was significantly higher in C. hyperboreus in the core SCM than in C. glacialis above and below the core SCM. Foraging interference resulting in the exclusion from the core SCM of the smaller C. glacialis by the larger C. hyperboreus could explain this vertical partitioning of the actively grazing copepodite stages of the two species. Alternatively, specific preferences for microalgal and/or microzooplankton food hypothetically occupying different layers in the SCM could explain the observed partitioning. Investigating the observed fine-scale co-distributions further will enable researchers to better predict potential climate change effects on these important Arctic congeners.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2019) 7: 1.
Published: 02 January 2019
Abstract
Arctic cod ( Boreogadus saida ) is the dominant pelagic fish in Arctic seas and a staple food of many arctic predators including several seabird species. Marginal ice zones are known as important feeding locations for seabirds. The hypothesis that thick-billed murre ( Uria lomvia ), northern fulmar ( Fulmarus glacialis ) and black-legged kittiwake ( Rissa tridactyla ) congregate in areas of high Arctic cod food resource and low ice concentration was tested at different spatial scales. Arctic cod biomass was estimated by hydroacoustics as a resource proxy, and seabirds were counted and sampled for stomach analysis along eight longitudinal transects across the marginal ice zone in southern Baffin Bay in June–July 2016. With increasing length, the epipelagic age-0 Arctic cod migrated from open waters to ice-covered areas. Subsequently, age-1 and age-2 Arctic cod tended to concentrate in a subsurface layer (40–100 m) within the epipelagic layer. Arctic cod 5.7–16.1 cm long (late age-0 to age-5) were the main fish prey of the three seabird species, which preferentially captured age-1 cod (6–11.5 cm). At large spatial scale (western versus eastern Baffin Bay), thick-billed murre, northern fulmar and their Arctic cod resource proxy were generally more abundant on the western ice-covered side of Baffin Bay. No clear spatial match was found, however, when comparing seabird abundances and their food-resource proxy in different ice concentrations across the marginal ice zone or at small scale (5 km). At medium scale (12.5 km), only murre density was influenced positively by its Arctic cod resource. A lack of schooling behavior and a successful strategy to avoid predation by hiding under the ice could explain the absence of any strong spatial match between Arctic cod and its seabird predators at these different scales.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 83.
Published: 20 December 2018
Abstract
The sustainable use of global marine resources depends upon science-based decision processes and systems. Informing decisions with science is challenging for many reasons, including the nature of science and science-based institutions. The complexity of ecosystem-based management often requires the use of models, and model-based advice can be especially difficult to convert into policies or decisions. Here, we suggest five characteristics of model-based information and advice for successfully informing ocean management decision-making, based on the Ocean Modeling Forum framework. Illustrated by examples from two fisheries case studies, Pacific sardines Sardinops sagax and Pacific herring Clupea pallasii , we argue that actionable model-based output should be aspirational, applicable, parsimonious, co-produced, and amplifying.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 63.
Published: 08 October 2018
Abstract
Healthy parrotfish (family Scaridae) communities fulfill the essential ecosystem process of herbivory in coral reefs, but artisanal fisheries that target parrotfish have degraded their populations. Outright bans and gear restrictions that do not allow parrotfish capture can effectively protect and restore parrotfish populations. As these management actions would be unfeasible in many places, options that allow some fishing but still encourage population rebuilding need to be considered. The life history of parrotfish complicates management decisions because they transition from a mostly female “initial phase” to an all-male “terminal phase.” Size-selective fishing on the largest fish can lead to unnaturally low proportions of males in a population, potentially leading to losses in reproduction. At the same time, these visually distinct life phases could present an opportunity to employ a type of catch restriction that would be easy to understand and monitor. We built an agent-based model of the stoplight parrotfish, Sparisoma viride , which included three possible mechanisms of life-phase transitioning, to predict how this species and others like it might react to catch restrictions based on life phase. We found that restricting catch to only terminal-phase (male) fish typically led to populations of greater abundance and biomass and less-disturbed life-phase ratio, compared to a similar fishing mortality applied to the whole population. This model result highlights a potentially important lesson for all exploited protogynous hermaphrodites: a robust population of initial-phase fish may be key to maximizing reproductive potential when the size at life-phase transition compensates for changes in population structure.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 54.
Published: 23 July 2018
Abstract
Ocean acidification (OA) will have a predominately negative impact on marine animals sensitive to changes in carbonate chemistry. Coastal upwelling regions, such as the Northwest coast of North America, are likely among the first ecosystems to experience the effects of OA as these areas already experience high pH variability and naturally low pH extremes. Over the past decade, pH off the Olympic coast of Washington has declined an order of magnitude faster than predicted by accepted conservative climate change models. Resource managers are concerned about the potential loss of intertidal biodiversity likely to accompany OA, but as of yet, there are little pH sensitivity data available for the vast majority of taxa found on the Olympic coast. The intertidal zone of Olympic National Park is particularly understudied due to its remote wilderness setting, habitat complexity, and exceptional biodiversity. Recently developed methodological approaches address these challenges in determining organism vulnerability by utilizing experimental evidence and expert opinion. Here, we use such an approach to determine intertidal organism sensitivity to pH for over 700 marine invertebrate and algal species found on the Olympic coast. Our results reinforce OA vulnerability paradigms for intertidal taxa that build structures from calcium carbonate, but also introduce knowledge gaps for many understudied species. We furthermore use our assessment to identify how rocky intertidal communities at four long-term monitoring sites on the Olympic coast could be affected by OA given their community composition.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2018) 6: 51.
Published: 16 July 2018
Abstract
Understanding larval bivalve responses to variable regimes of seawater carbonate chemistry requires realistic quantification of physiological stress. Based on a degree-day modeling approach, we developed a new metric, the ocean acidification stress index for shellfish (OASIS), for this purpose. OASIS integrates over the entire larval period the instantaneous stress associated with deviations from published sensitivity thresholds to aragonite saturation state (Ω Ar ) while experiencing variable carbonate chemistry. We measured survival to D-hinge and pre-settlement stage of four Pacific oyster ( Crassostrea gigas ) cohorts with different histories of carbonate chemistry exposure at the Whiskey Creek Hatchery, Netarts Bay, OR, to test the utility of OASIS as a stress metric and document the effects of buffering seawater in mitigating acute and chronic exposure to ocean acidification. Each cohort was divided into four groups and reared under the following conditions: 1) stable, buffered seawater for the entire larval period; 2) stable, buffered seawater for the first 48 hours, then naturally variable, unbuffered seawater; 3) stable, unbuffered seawater for the first 48 hours, then buffered seawater; and 4) stable, unbuffered seawater for the first 48 hours, then naturally variable, unbuffered seawater. Patterns in Netarts Bay carbonate chemistry were dominated by seasonal upwelling at the time of the experimental work, resulting in naturally highly variable Ω Ar for the larvae raised in the unbuffered treatments. Two of the four cohorts showed strongly positive responses to buffering in survival to 48 hours; three of the four, in survival to pre-settlement. OASIS accurately predicted survival for two of the three cohorts tested (the fourth excluded due to other environmental factors), suggesting that this new metric could be used to better understand larval bivalve survival in naturally variable environments. OASIS may also be useful to an array of diverse stakeholders with increasing access to highly resolved temporal measurements of carbonate chemistry.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2017) 5: 53.
Published: 12 September 2017
Abstract
Information on ecosystem sensitivity to global change can help guide management decisions. Here, we characterize the sensitivity of the Puget Sound ecosystem to ocean acidification by estimating, at a number of taxonomic levels, the direct sensitivity of its species. We compare sensitivity estimates based on species mineralogy and on published literature from laboratory experiments and field studies. We generated information on the former by building a database of species in Puget Sound with mineralogy estimates for all CaCO 3 -forming species. For the latter, we relied on a recently developed database and meta-analysis on temperate species responses to increased CO 2 . In general, species sensitivity estimates based on the published literature suggest that calcifying species are more sensitive to increased CO 2 than non-calcifying species. However, this generalization is incomplete, as non-calcifying species also show direct sensitivity to high CO 2 conditions. We did not find a strong link between mineral solubility and the sensitivity of species survival to changes in carbonate chemistry, suggesting that, at coarse scales, mineralogy plays a lesser role to other physiological sensitivities. Summarizing species sensitivity at the family level resulted in higher sensitivity scalar scores than at the class level, suggesting that grouping results at the class level may overestimate species sensitivity. This result raises caution about the use of broad generalizations on species response to ocean acidification, particularly when developing summary information for specific locations. While we have much to learn about species response to ocean acidification and how to generalize ecosystem response, this study on Puget Sound suggests that detailed information on species performance under elevated carbon dioxide conditions, summarized at the lowest taxonomic level possible, is more valuable than information on species mineralogy.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2017) 5: 43.
Published: 02 August 2017
Abstract
Increased sea ice melt alters vertical surface-mixing processes in Arctic seas. More melt water strengthens the stratification, but an absent ice cover also exposes the uppermost part of the water column to wind-induced mixing processes. We conducted a field study in the Barents Sea, an Arctic shelf sea, to examine the effects of stratification and vertical mixing processes on 1) the upward nitrate flux (into surface layers <65 m) and 2) the downward flux of particulate organic carbon (POC) to ≤200 m. In the Arctic-influenced, drift ice-covered northern Barents Sea, we found a low upward nitrate flux into the surface layers (<0.1 mmol nitrate m –2 d –1 ) and a moderate downward POC flux (40–200 m: 150–250 mg POC m –2 d –1 ) during the late phase of a peak bloom. A 1-D residence time calculation indicated that the nitrate concentration in the surface layers constantly declined. In the Atlantic-influenced, ice-free, and weakly stratified southern Barents Sea a high upward nitrate flux was found (into the surface layers ≤25 m: >5 mmol nitrate m –2 d –1 ) during a post bloom situation which was associated with a high downward POC flux (40–120 m: 260–600 mg POC m –2 d –1 ). We suggest that strong wind events during our field study induced vertical mixing processes and triggered upwards nitrate flux, while a combination of down-mixed phytoplankton and fast-sinking mesozooplankton fecal pellets enhanced the downward POC flux. The results of this study underscore the need to further investigate the role of strong, episodic wind events on the upward nitrate and downward POC fluxes in weakly stratified regions of the Arctic that may be ice-free in future.
Includes: Supplementary data
Journal Articles
Elementa: Science of the Anthropocene (2016) 4: 000099.
Published: 07 April 2016
Abstract
The North Atlantic Ocean contains diverse patterns of seasonal phytoplankton blooms with distinct internal dynamics. We analyzed blooms using remotely-sensed chlorophyll a concentration data and change point statistics. The first bloom of the year began during spring at low latitudes and later in summer at higher latitudes. In regions where spring blooms occurred at high frequency (i.e., proportion of years that a bloom was detected), there was a negative correlation between bloom timing and duration, indicating that early blooms last longer. In much of the Northeast Atlantic, bloom development extended over multiple seasons resulting in peak chlorophyll concentrations in summer. Spring bloom start day was found to be positively correlated with a spring phenology index and showed both positive and negative correlations to sea surface temperature and the North Atlantic Oscillation in different regions. Based on the characteristics of spring and summer blooms, the North Atlantic can be classified into two regions: a seasonal bloom region, with a well-defined bloom limited to a single season; and a multi-seasonal bloom region, with blooms extending over multiple seasons. These regions differed in the correlation between bloom start and duration with only the seasonal bloom region showing a significant, negative correlation. We tested the hypothesis that the near-surface springtime distribution of copepods that undergo diapause ( Calanus finmarchicus , C. helgolandicus , C. glacialis , and C. hyperboreus ) may contribute to the contrast in bloom development between the two regions. Peak near-surface spring abundance of the late stages of these Calanoid copepods was generally associated with areas having a well-defined seasonal bloom, implying a link between bloom shape and their abundance. We suggest that either grazing is a factor in shaping the seasonal bloom or bloom shape determines whether a habitat is conducive to diapause, while recognizing that both factors can re-enforce each other.
Includes: Supplementary data