Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-1 of 1
Devan M. Nisson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Elementa: Science of the Anthropocene (2020) 8: 45.
Published: 24 August 2020
Abstract
Many ecosystems are experiencing an increase in drought conditions as a consequence of climate warming and changing precipitation patterns. The stress imposed by these environmental changes can affect ecosystem processes such as the extracellular enzymatic degradation of carbon-containing leaf litter by soil microbial communities. However, the magnitude of these impacts may depend on the composition and metabolism of the microbial community. Based on the hypothesis of local adaptation, microbial communities native to warm-dry ecosystems should display a greater capacity to degrade leaf litter polymers with extracellular enzymes following exposure to warm-dry conditions. To test this hypothesis, we performed a microcosm study in which we monitored extracellular enzyme activity and respiration of microbial communities from five ecosystems along a southern California climate gradient, ranging from warmer, drier desert to wetter, cooler subalpine forest. To simulate drought and rewetting, we subjected microcosms to periods of high temperature and low moisture followed by a water pulse. We found that enzyme activity of wet-cool communities generally exceeded that of warm-dry communities across enzyme types for the five sites we considered. Additionally, we observed a significant decrease in respiration for all communities after longer durations of drought exposure. Although these findings did not align with our expectations of local adaptation, they suggest litter-inhabiting microbial communities are able to retain metabolic functioning in environmental conditions different from those of their native ecosystems. These results may imply that factors such as litter chemistry impose greater constraints than climate on community metabolic function. Overall, despite differences in local climates, microbial communities from semiarid regions may be metabolically adapted to maintain functioning in the face of drought.
Includes: Supplementary data