We analyze the role biological control plays in the Cuban agri-food system and discuss an experience at the country level that demonstrates that the pest problem can be handled through an ecological and sustainable approach. Biological control is one of the key components of a systemic approach that characterizes pest management. Its implementation has led to the removal of a group of highly dangerous pesticides from the Official List of Authorized Pesticides and reduced use of others. Greater emphasis has been placed on augmentative biological control, which is a tendency repeated throughout the world. In Cuba, rudimentary production occurs in 176 Centers for the Reproduction of Entomophages and Entomopathogens (CREE) located throughout the country; four industrial production plants are in operation, as are pilot plants and facilities in research centers. The biological control agents that are most reproduced are the parasitoids Lixophaga diatraeae (Townsend) (Diptera: Tachinidae) and Trichogramma Westwood (Hymenoptera: Trichogrammatidae), the entomopathogens Bacillus thuringiensis Berliner (Bacillales: Bacillaceae), and Beauveria bassiana sensu lato (Bals.-Criv.) Vuill. (Hypocreales: Cordycipitaceae); the antagonist Trichoderna Persoon (Ascomycota: Hypocreales: Hypocreaceae); and the nematodes of the Heterorhabditis Poinar (Nematoda: Rhabditida: Heterorhabditidae) genus. The use of predatory mites in inoculative strategies is limited due to their restricted availability, in spite of the fact that different alternatives have been evaluated for their massive reproduction with encouraging results. The achievements and progress obtained in classical and augmentative biological control and the changes in the understanding and thinking in Cuban agricultural have laid strong foundations for biological control through conservation of natural enemies. This latter strategy is greatly valued in sustainable agriculture. Please refer to Supplementary Materials, Full text Spanish version of this article, for a full text Spanish version of this article.

Se analiza el modo en que el control biológico está insertado en el sistema agroalimentario cubano y se presenta una experiencia a escala de país que demuestra que los problemas de plagas se pueden enfrentar desde una perspectiva ecológica y sostenible. El control biológico es uno de los componentes claves del enfoque sistémico que caracteriza el manejo de plagas, su implementación ha permitido la retirada de un grupo de Plaguicidas Altamente Peligrosos de la Lista Oficial de Plaguicidas Autorizados, y la disminución en el uso de otros. El énfasis mayor ha sido puesto en el control biológico aumentativo, esa es la tendencia seguida en todo el mundo. La producción artesanal se realiza en 176 Centros de Reproducción de Entomófagos y Entomopatógenos, distribuidos por todo el territorio nacional; funcionan cuatro plantas de producción industrial y plantas e instalaciones pilotos en los centros de investigación. Los agentes de control biológico que en mayor cantidad se reproducen son: los parasitoides Lixophaga diatraeae (Townsend) (Diptera: Tachinidae) y Trichogramma Westwood (Hymenoptera: Trichogrammatidae), los entomopatógenos Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) y Beauveria bassiana sensu lato (Bals.-Criv.) Vuill. (Hypocreales: Cordycipitaceae), el antagonista Trichoderna Persoon (Ascomycota: Hypocreales: Hypocreaceae), y los nematodos del género Heterorhabditis Poinar (Nematoda: Rhabditida: Heterorhabditidae). El uso de ácaros depredadores en estrategias inoculativas está limitado por su escasa disponibilidad, a pesar de que se han evaluado diferentes alternativas para su reproducción masiva con resultados alentadores. Los logros y avances alcanzados en el control biológico clásico y aumentativo y los cambios producidos en la visión y en el pensamiento agrícola cubano han sentado sólidas bases para el control biológico por conservación de enemigos naturales. Esta última es la estrategia que tiene un verdadero valor para la agricultura sostenible. La versión en español de este artículo se puede encontrar en Materiales Suplementarias, Full text Spanish version of this article.

In the past 20 years, global public awareness has grown regarding the dangers of using chemical-synthesis pesticides. Increased awareness is due to numerous actions undertaken by many organizations and institutions throughout the world. Outstanding activities include the advances in scientific knowledge of the negative impacts of pesticide use on human, animal, soil, and ecosystem health (Pretty, 2005; Viewege et al., 2014; IARC, 2015a, 2015b; TFSP, 2015); the existence of legally binding international conventions and treaties (i.e., Rotterdam, Stockholm, and Montreal) regarding the use of these substances (Weinberg, 2008); the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) calls to governments since 2006 for the gradual elimination of Highly Dangerous Pesticides (HDP) (FAO, 2006); approval of the “Strategic Approach to International Chemical Management” (SAICM) (UNEP, 2006); and a list of highly dangerous pesticides published since 2009 by the Pesticide Action Network (PAN International, 2016). Among the most notable recent actions is the fact that at the 34th period of sessions of the United Nations Human Rights Council, held from February 27 to March 24, 2017, the Special Rapporteur on the Right to Food, Hilal Elver, recommended going beyond voluntary measures so that the international community could prepare a broad and binding treaty that included “drafting policies to reduce the use of pesticides throughout the world and a framework for progressively prohibiting and eliminating highly dangerous pesticides” (UN, 2017).

In this brief description of public policies and political instruments, what role does biological control (BC) play? First, BC is among the main alternatives to the use of pesticides. Successful experiences in various countries demonstrate its positive and undeniable pest-management role in sustainable agriculture (Bettiol et al., 2014; Parra, 2014; Cock et al., 2016; van Lenteren et al., 2017).

Currently, different schools of BC coexist, but for the majority the foundational principle is based on rudiments of insect ecology and on reducing broad-spectrum-action pesticides (Warner et al., 2011). The following is among the most widely accepted BC definition: “The use of living organisms to suppress the population density or impact of a specific pest organism, making it less abundant or less damaging than it would otherwise be” (Eilenberg et al., 2001, p. 390). A considerable number of organisms can be used as biological control agents (BCA). More than 440 BCA species are available on the market (van Lenteren et al., 2017). Today Latin America and the Caribbean are among the regions where the BCA market is experiencing significant growth (van Lenteren, 2012; van Lenteren et al., 2017). In 2012, this region was the fourth among five regions in BCA sales (Veronelli, 2012; van Lenteren et al., 2017).

In the fullest sense of the concept, BC in Cuba has a lengthy and rich history that has involved learning about natural biological control (NBC) and applying three BC strategies: classical biological control (CBC), augmentative biological control (ABC) (inundative and inoculative), and conservation biological control (CBC). Studies on NBC allow us to identify, partially, the diversity of endemic and native species of natural enemies and understand the principles and relationships that sustain the ecosystem services of natural pest control (van Lenteren, 2006; Gillespie and Wratten, 2012). BC is one of the key components of the systemic approach that characterizes both the comprehensive and ecological management of pests. Its implementation has led to the removal of a number of highly dangerous pesticides from the Official List of Authorized Pesticides of the Republic of Cuba (MINAG, 2016) and to decreased use of other pesticides (Pérez et al., 2010). A historical analysis of advances in this field reveals that there has been steady progress, in spite of the country’s economic difficulties that undoubtedly hinder scientific research and the dissemination, application, and extension of results to society.

We understand that the success of BC depends heavily on governmental investment in research and development and on the institutions whose goals include reducing the incidence of pesticides (Bale et al., 2008). During the height of the economic crisis of the 1990s in Cuba, a percentage of the country’s scarce funds were channeled to continuing research and development of BC, and greater efforts were made to reduce the incidence of pesticides. What occurred was not simply a substitution of inputs, as is often done in other places; the idea was never, nor is it now, “eliminate a chemical to substitute a biological agent.”

The triad consisting of the concepts of sustainability, sustainable agriculture, and agroecology arrived in Cuba along with the economic crisis triggered by the fall of the socialist countries. This was the starting point of past and present transformations in Cuban agriculture on a national scale. By 1990, the two National Programs of Biological Control that began in the 1980s (see Table 1) had sufficiently advanced to address the challenges of the period related to plant health.

Table 1

Chronology of cases and notable events related to biological control in Cuba (1904–2016). DOI: https://doi.org/10.1525/elementa.326.t1

YearCase or eventNatural enemyPestsReferences

 
1904 Creation of the Central Agronomic Station in Santiago de las Vegas (today known as the Alexander von Humboldt Institute of Fundamental Research in Tropical Agriculture). Martínez, 2004  
1906 Annual Report 1904–1905 Central Agronomic Station, part of the publication Algunas Coccinellidae de Cuba by George W. Dimmock. Coccinellids Mostly aphids, coccids, pseudococcids, white flies, and mites. Dimmock, 1906  
1914 For the first time Wolcott observed a parasitoid on borer larva of a sugarcane stalk (Saccharum spp. L.), with a wide dispersion in the sugarcane fields of the provinces of Matanzas, Havana, Las Villas, and Oriente. Lixophaga diatraeae (Townsend)
(Diptera: Tachinidae) 
Diatraea saccharalis Fabricius, sensu Guenée
(Lepidoptera: Crambidae) 
Fernández, 2002  
1917 First introduction of a predator insect. Cryptolaemus montrouzieri Mulsant
(Coleoptera: Coccinellidae) 
Pseudococcus spp.
(Hemiptera: Pseudococcidae) 
Milán et al., 2005 
Kairo et al., 2013  
1928 Second introduction of a predator. Rodolia cardinalis (Mulsant)
(Coleoptera: Coccinellidae) 
Icerya purchasi Maskell
(Hemiptera: Monophlebidae) 
DeBach and Rosen, 1991  
1930–1931 Three parasitoids imported from Singapore for release in citrus fields (Citrus spp. L.). Eretmocerus serius Silvestri,
(Hymenoptera: Aphelinidae) 
Aleurocanthus woglumi Ashby
(Hemiptera: Aleyrodidae) 
DeBach and Rosen, 1991  
  Encarsia divergens Silvestri
(Hymenoptera: Aphelinidae) 
A. woglumi DeBach and Rosen, 1991  
  Encarsia smithi Sivestri
(Hymenoptera: Aphelinidae) 
A. woglumi DeBach and Rosen, 1991  
1930 Curtis P. Clausen imported two predators to be used in citrus plantations. Catana clauseni Chapin,
(Coleoptera: Coccinellidae) 
A. woglumi DeBach and Rosen, 1991  
  Scymnus smithianus Silvestri
(Coleoptera: Coccinellidae) 
A. woglumi DeBach and Rosen, 1991  
1930s L. C. Scaramuzza begins studies of biology, reproduction, and release of the Cuban fly. This is arguably the starting point for the development of applied biological control in Cuba. L. diatraeae D. saccharalis Fernández, 2002  
1934–1939 Introduction of two parasitoids. Paratheresia claripalpis van der Wulp
(Diptera: Tachinidae)
Metagonistylum minense Townsend
(Diptera: Tachinidae) 
D. saccharalis Fernández, 2002  
1945 Inauguration of the first biological control laboratory for reproduction and sale of L. diatraeae, in the sugar workers’ town of the Mercedes central (today known as Seis de Agosto). L. diatraeae D. saccharalis Fernández, 2002  
1960s Second introduction of de C. montrouzieriC. montrouzieri Pseudococcids Kairo et al., 2013  
 The first microbial bio-pesticides arrive in the country to control the larva of lepidopterans in tobacco (Nicotiana tabacum L.) and grasses. Bacillus thuringiensis Berliner
(Bacillales: Bacillaceae) 
Heliothis virescens Fabricius
(Lepidoptera: Noctuidae)
Mocis latipes Guenée
(Lepidoptera: Erebidae) 
Fernández-Larrea, 2013  
 Study by Salvador de la Torre y Callejas of native species of a parasitoid of eggs. His research contributed basic knowledge for the development of a mass-production technology. Trichogramma Westwood
(Hymenoptera: Trichogrammatidae) 
Eggs of lepidopterans Fuentes, 1994  
 Development of technologies and construction of the Centers for the Reproduction of Entomophages and Entomopathogens (CREE) for the rudimentary production of microbial and macrobial biological control agents. B. thuringiensis
Trichogramma spp. 
D. saccharalis
M. latipes
H. virescens
Erinnyis ello L
(Lepidoptera: Sphingidae)
Plutella xylostella L.
(Lepidoptera: Plutellidae) 
Fernández-Larrea, 2007 
Massó, 2007  
1970s Studies begin with entomopathogenic nematodes at the Institute of Research on Citrus and other Fruits (today renamed Institute of Tropical Fruit Growing). Heterorhabditis heliothidis
(Khan, Brooks & Hirschmann)
(Nematoda: Rhabditida: Heterorhabditidae) 
Pachnaeus litus (Germar, 1824)
(Coleoptera: Curculionidae) 
Rodríguez et al., 2012  
 The rudimentary production of two entomopathogenic fungi begins. Beauveria bassiana sensu lato (Bals.-Criv.)
Vuill. (Hypocreales: Cordycipitaceae)
Metarhizium anisopliae sensu lato (Metsch.)
Sorokin (Hypocreales: Clavicipitaceae) 
Cosmopolites sordidus (Germar) Marshall, G.A.K.
(Coleoptera: Curculionidae)
Cylas formicarius (Fabricius)
(Coleoptera: Brentidae)
Tagosodes oryzicolus (Muir) (Hemiptera: Delphacidae)
P. litus 
Fernández-Larrea, 2007  
 Investigations begin with predator mites of the Phytoseiidae family. More than 60 species were reported on, belonging to 20 genera. Phytophagous mites Rodríguez et al., 2013  
1980 The Ministry of Sugar established the National Program of Biological Control. Fuentes et al., 1998  
1982 Declaration of a Comprehensive Management of Pests as a policy of the Cuban state. Pérez, 2007  
1988 The Ministry of Agriculture approves the National Program for Production of Biological Controls. Fuentes et al., 1998  
1990s Further research with parasitoids of the Spodoptera complex and other lepidoptera. Biological studies were undertaken and methodologies prepared for the massive reproduction of six parasitoids. Telenomus Haliday
(Hymenoptera: Platygastridae) 
Spodoptera frugiperda J. E. (Smith) (Lepidoptera: Noctuidae) Fuentes et al., 1998  
  Euplectrus platyhypenae Howard
(Hymenoptera: Eulophidae) 
S. frugiperda
Spodoptera eridania (Stoll)
(Lepidoptera: Noctuidae)
Leucania Ochsenheimer
(Lepidoptera: Noctuidae) 
 
  Archytas marmoratus Townsend
(Diptera: Tachinidae) 
S. frugiperda
Leucania unipuncta Harworth
(Lepidopera: Noctuidae) 
 
  Chelonus insularis Cresson
(Hymenoptera: Braconidae 
Complejo Spodoptera Guenée
(Lepidoptera: Noctuidae) 
 
  Rogas Nees von Esenbeck
(Hymenoptera: Braconidae 
Complejo Spodoptera  
  Eucelatoria Townsend (Diptera: Tachinidae) S. frugiperda
L. unipuncta 
 
 The National Center of Agricultural Health undertakes its first prospective studies of entomopathogenic nematodes. Heterorhabditis Poinar (Nematoda: Rhabditida: Heterorhabditidae)
Steinernema Travassos,
(Nematoda: Rhabditida: Steinernematidae) 
Lepidoptera, beetles, and pseudococcids on sugarcane, citrus, coffee trees (Coffea arabica L. and Coffea canephora L.), pineapple (Ananas comosus (L.) Merr.), and vegetable crops Rodríguez et al., 2012  
 Studies continue with predatory mites of the Phytoseiidae family. Phytoseiulus macropilis Athias-Henriot
(Acari: Phytoseiidae) 
Tetranychus tumidus Banks (Acari: Tetranychidae) and Panonychus citri (McGregor) (Acari: Tetranychidae), in banana (Musa L.) and citrus nurseries. Rodríguez et al., 2013  
1994–1996 Mass production of two parasitoids begins in the provinces of Havana, Villa Clara, and Sancti Spíritus, which are included in a program of comprehensive pest management. Telenomus spp.
E. platyhypenae 
Complejo Spodoptera
Leucania spp. 
Fuentes et al., 1998  
1995 50 centers in operation for the reproduction of L. diatraeae, which release up to 78 million flies over 1.6 million hectares. Fuentes et al., 1998  
1995–1998 Release of a new parasitoid from Brazil, Venezuela, and Peru for use on sugarcane plantations. Cotesia flavipes Cameron
(Hymenoptera: Braconidae) 
D. saccharalis Rodríguez et al., 2001  
2000 Third introduction of C. montrouzieriC. montrouzieri Pseudoccócidos Milán et al., 2005 
Kairo et al., 2013  
2003 Introduction of the Ivory Coast wasp, parasitoid of the borer beetle of the fruit of the coffee tree from Mexico. Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae) Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) Peña et al., 2006 
Murguido et al., 2008  
2004 A Commission of Agricultural Biotechnology Priority Products is formed within the Ministry of Agriculture that analyzed results obtained in the branch research programs of the National Scientific and Technical Program “Agricultural Biotechnology.” Fernández-Larrea, 2013  
2006 Introduction of the Togo wasp, parasitoid of the borer pest in the coffee tree from Mexico. Phymastichus coffea LaSalle
(Hymenoptera: Eulophidae) 
H. hampei Rodríguez et al., 2007  
2010 Production of entomopathogenic nematodes in 33 CREEs. 700 million infective juveniles are produced monthly. H. bacteriophora cepa HC1 Lepidoptera pests in sugarcane and other crops. Rodríguez et al., 2012  
 The Commission for Agricultural Biotechnology Priority Products presents a project for large-scale production of the most requested microbial biological control agents, biopesticides of botanical origin, biostimulants, and biofertilizers. Fernández-Larrea, 2013  
2011 Approval is granted to the project presented by the Commission for Agricultural Biotechnology Priority Products and is currently implemented by the LABIOFAM Entrepreneurial Group. Fernández-Larrea, 2013  
2013 Introduction of an endoparasitoid of the pink bedbug of the hibiscus (Hibiscus), from the Island of Margarita, Venezuela. Anagyrus kamali Moursi (Hymenoptera: Encyrtidae) Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae) Jiménez et al., 2015  
2013 Four plants for the production of biopesticides and 176 Centers for the Reproduction of Entomophags and Entomopathogens are in operation, as well as plants and pilot facilities in research centers. Fernández-Larrea, 2013  
2015 Review of Cuban agro-environmental policies. Febles, 2016  
2016 Removal of the following highly dangerous pesticides from the Official List of Authorized Pesticides: methamidophos, parathion-methyl, and methiocarb. MINAG, 2016  
2016 Activity F, “Undertake actions that contribute to the agroecological management of pests” is included in the document, “Cuba: National Goals for Biological Diversity 2016–2010. CITMA, 2016  
YearCase or eventNatural enemyPestsReferences

 
1904 Creation of the Central Agronomic Station in Santiago de las Vegas (today known as the Alexander von Humboldt Institute of Fundamental Research in Tropical Agriculture). Martínez, 2004  
1906 Annual Report 1904–1905 Central Agronomic Station, part of the publication Algunas Coccinellidae de Cuba by George W. Dimmock. Coccinellids Mostly aphids, coccids, pseudococcids, white flies, and mites. Dimmock, 1906  
1914 For the first time Wolcott observed a parasitoid on borer larva of a sugarcane stalk (Saccharum spp. L.), with a wide dispersion in the sugarcane fields of the provinces of Matanzas, Havana, Las Villas, and Oriente. Lixophaga diatraeae (Townsend)
(Diptera: Tachinidae) 
Diatraea saccharalis Fabricius, sensu Guenée
(Lepidoptera: Crambidae) 
Fernández, 2002  
1917 First introduction of a predator insect. Cryptolaemus montrouzieri Mulsant
(Coleoptera: Coccinellidae) 
Pseudococcus spp.
(Hemiptera: Pseudococcidae) 
Milán et al., 2005 
Kairo et al., 2013  
1928 Second introduction of a predator. Rodolia cardinalis (Mulsant)
(Coleoptera: Coccinellidae) 
Icerya purchasi Maskell
(Hemiptera: Monophlebidae) 
DeBach and Rosen, 1991  
1930–1931 Three parasitoids imported from Singapore for release in citrus fields (Citrus spp. L.). Eretmocerus serius Silvestri,
(Hymenoptera: Aphelinidae) 
Aleurocanthus woglumi Ashby
(Hemiptera: Aleyrodidae) 
DeBach and Rosen, 1991  
  Encarsia divergens Silvestri
(Hymenoptera: Aphelinidae) 
A. woglumi DeBach and Rosen, 1991  
  Encarsia smithi Sivestri
(Hymenoptera: Aphelinidae) 
A. woglumi DeBach and Rosen, 1991  
1930 Curtis P. Clausen imported two predators to be used in citrus plantations. Catana clauseni Chapin,
(Coleoptera: Coccinellidae) 
A. woglumi DeBach and Rosen, 1991  
  Scymnus smithianus Silvestri
(Coleoptera: Coccinellidae) 
A. woglumi DeBach and Rosen, 1991  
1930s L. C. Scaramuzza begins studies of biology, reproduction, and release of the Cuban fly. This is arguably the starting point for the development of applied biological control in Cuba. L. diatraeae D. saccharalis Fernández, 2002  
1934–1939 Introduction of two parasitoids. Paratheresia claripalpis van der Wulp
(Diptera: Tachinidae)
Metagonistylum minense Townsend
(Diptera: Tachinidae) 
D. saccharalis Fernández, 2002  
1945 Inauguration of the first biological control laboratory for reproduction and sale of L. diatraeae, in the sugar workers’ town of the Mercedes central (today known as Seis de Agosto). L. diatraeae D. saccharalis Fernández, 2002  
1960s Second introduction of de C. montrouzieriC. montrouzieri Pseudococcids Kairo et al., 2013  
 The first microbial bio-pesticides arrive in the country to control the larva of lepidopterans in tobacco (Nicotiana tabacum L.) and grasses. Bacillus thuringiensis Berliner
(Bacillales: Bacillaceae) 
Heliothis virescens Fabricius
(Lepidoptera: Noctuidae)
Mocis latipes Guenée
(Lepidoptera: Erebidae) 
Fernández-Larrea, 2013  
 Study by Salvador de la Torre y Callejas of native species of a parasitoid of eggs. His research contributed basic knowledge for the development of a mass-production technology. Trichogramma Westwood
(Hymenoptera: Trichogrammatidae) 
Eggs of lepidopterans Fuentes, 1994  
 Development of technologies and construction of the Centers for the Reproduction of Entomophages and Entomopathogens (CREE) for the rudimentary production of microbial and macrobial biological control agents. B. thuringiensis
Trichogramma spp. 
D. saccharalis
M. latipes
H. virescens
Erinnyis ello L
(Lepidoptera: Sphingidae)
Plutella xylostella L.
(Lepidoptera: Plutellidae) 
Fernández-Larrea, 2007 
Massó, 2007  
1970s Studies begin with entomopathogenic nematodes at the Institute of Research on Citrus and other Fruits (today renamed Institute of Tropical Fruit Growing). Heterorhabditis heliothidis
(Khan, Brooks & Hirschmann)
(Nematoda: Rhabditida: Heterorhabditidae) 
Pachnaeus litus (Germar, 1824)
(Coleoptera: Curculionidae) 
Rodríguez et al., 2012  
 The rudimentary production of two entomopathogenic fungi begins. Beauveria bassiana sensu lato (Bals.-Criv.)
Vuill. (Hypocreales: Cordycipitaceae)
Metarhizium anisopliae sensu lato (Metsch.)
Sorokin (Hypocreales: Clavicipitaceae) 
Cosmopolites sordidus (Germar) Marshall, G.A.K.
(Coleoptera: Curculionidae)
Cylas formicarius (Fabricius)
(Coleoptera: Brentidae)
Tagosodes oryzicolus (Muir) (Hemiptera: Delphacidae)
P. litus 
Fernández-Larrea, 2007  
 Investigations begin with predator mites of the Phytoseiidae family. More than 60 species were reported on, belonging to 20 genera. Phytophagous mites Rodríguez et al., 2013  
1980 The Ministry of Sugar established the National Program of Biological Control. Fuentes et al., 1998  
1982 Declaration of a Comprehensive Management of Pests as a policy of the Cuban state. Pérez, 2007  
1988 The Ministry of Agriculture approves the National Program for Production of Biological Controls. Fuentes et al., 1998  
1990s Further research with parasitoids of the Spodoptera complex and other lepidoptera. Biological studies were undertaken and methodologies prepared for the massive reproduction of six parasitoids. Telenomus Haliday
(Hymenoptera: Platygastridae) 
Spodoptera frugiperda J. E. (Smith) (Lepidoptera: Noctuidae) Fuentes et al., 1998  
  Euplectrus platyhypenae Howard
(Hymenoptera: Eulophidae) 
S. frugiperda
Spodoptera eridania (Stoll)
(Lepidoptera: Noctuidae)
Leucania Ochsenheimer
(Lepidoptera: Noctuidae) 
 
  Archytas marmoratus Townsend
(Diptera: Tachinidae) 
S. frugiperda
Leucania unipuncta Harworth
(Lepidopera: Noctuidae) 
 
  Chelonus insularis Cresson
(Hymenoptera: Braconidae 
Complejo Spodoptera Guenée
(Lepidoptera: Noctuidae) 
 
  Rogas Nees von Esenbeck
(Hymenoptera: Braconidae 
Complejo Spodoptera  
  Eucelatoria Townsend (Diptera: Tachinidae) S. frugiperda
L. unipuncta 
 
 The National Center of Agricultural Health undertakes its first prospective studies of entomopathogenic nematodes. Heterorhabditis Poinar (Nematoda: Rhabditida: Heterorhabditidae)
Steinernema Travassos,
(Nematoda: Rhabditida: Steinernematidae) 
Lepidoptera, beetles, and pseudococcids on sugarcane, citrus, coffee trees (Coffea arabica L. and Coffea canephora L.), pineapple (Ananas comosus (L.) Merr.), and vegetable crops Rodríguez et al., 2012  
 Studies continue with predatory mites of the Phytoseiidae family. Phytoseiulus macropilis Athias-Henriot
(Acari: Phytoseiidae) 
Tetranychus tumidus Banks (Acari: Tetranychidae) and Panonychus citri (McGregor) (Acari: Tetranychidae), in banana (Musa L.) and citrus nurseries. Rodríguez et al., 2013  
1994–1996 Mass production of two parasitoids begins in the provinces of Havana, Villa Clara, and Sancti Spíritus, which are included in a program of comprehensive pest management. Telenomus spp.
E. platyhypenae 
Complejo Spodoptera
Leucania spp. 
Fuentes et al., 1998  
1995 50 centers in operation for the reproduction of L. diatraeae, which release up to 78 million flies over 1.6 million hectares. Fuentes et al., 1998  
1995–1998 Release of a new parasitoid from Brazil, Venezuela, and Peru for use on sugarcane plantations. Cotesia flavipes Cameron
(Hymenoptera: Braconidae) 
D. saccharalis Rodríguez et al., 2001  
2000 Third introduction of C. montrouzieriC. montrouzieri Pseudoccócidos Milán et al., 2005 
Kairo et al., 2013  
2003 Introduction of the Ivory Coast wasp, parasitoid of the borer beetle of the fruit of the coffee tree from Mexico. Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae) Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) Peña et al., 2006 
Murguido et al., 2008  
2004 A Commission of Agricultural Biotechnology Priority Products is formed within the Ministry of Agriculture that analyzed results obtained in the branch research programs of the National Scientific and Technical Program “Agricultural Biotechnology.” Fernández-Larrea, 2013  
2006 Introduction of the Togo wasp, parasitoid of the borer pest in the coffee tree from Mexico. Phymastichus coffea LaSalle
(Hymenoptera: Eulophidae) 
H. hampei Rodríguez et al., 2007  
2010 Production of entomopathogenic nematodes in 33 CREEs. 700 million infective juveniles are produced monthly. H. bacteriophora cepa HC1 Lepidoptera pests in sugarcane and other crops. Rodríguez et al., 2012  
 The Commission for Agricultural Biotechnology Priority Products presents a project for large-scale production of the most requested microbial biological control agents, biopesticides of botanical origin, biostimulants, and biofertilizers. Fernández-Larrea, 2013  
2011 Approval is granted to the project presented by the Commission for Agricultural Biotechnology Priority Products and is currently implemented by the LABIOFAM Entrepreneurial Group. Fernández-Larrea, 2013  
2013 Introduction of an endoparasitoid of the pink bedbug of the hibiscus (Hibiscus), from the Island of Margarita, Venezuela. Anagyrus kamali Moursi (Hymenoptera: Encyrtidae) Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae) Jiménez et al., 2015  
2013 Four plants for the production of biopesticides and 176 Centers for the Reproduction of Entomophags and Entomopathogens are in operation, as well as plants and pilot facilities in research centers. Fernández-Larrea, 2013  
2015 Review of Cuban agro-environmental policies. Febles, 2016  
2016 Removal of the following highly dangerous pesticides from the Official List of Authorized Pesticides: methamidophos, parathion-methyl, and methiocarb. MINAG, 2016  
2016 Activity F, “Undertake actions that contribute to the agroecological management of pests” is included in the document, “Cuba: National Goals for Biological Diversity 2016–2010. CITMA, 2016  

The close scientific collaboration with the countries of the ex-socialist block, especially in alliance with the USSR, notably contributed to advances in the countryside with augmentative biological control, which to a certain extent helped Cuba to acquire what today we call technological sovereignty, i.e., the use of technologies that at that moment were possible and necessary: rudimentary, local, and low-input technologies. Without consciously planning to do so (because in Cuba it was difficult to imagine the downfall of the socialist bloc), we were building resilience to a certain degree. The word “resilience” later became a part of our vocabulary, because the word “resistance,” which has a different meaning, was always present. This article explains how BC helped, and continues helping, the sustainability of the Cuban agri-food system, and outlines a country-level experience that demonstrates that pest problems can be addressed with an ecological and sustainable focus.

The history of BC in Cuba dates back more than 100 years (Massó, 2007). The beginning is in some way similar to that of other countries: observation of natural control activity such as parasitism, parasitoidism, predation, and diseases, and the introduction of natural enemies.

During the first half of the 20th century, several natural enemies were imported but, over time, there were few introductions (Table 1). Greater attention has been focused on ABC, but unlike other parts of the world, in Cuba, as in Argentina and Brazil, most of the natural enemies used in ABC are not introduced species (van Lenteren, 2012). In Pérez (2007), more detailed information is available regarding the historical evolution of BC in Cuba.

The cases and events covered in Table 1 substantiate the advances and validate the current tendency of conservation biological control as an ecosystem service for the natural regulation of pests in Cuba. Accumulated experience in classical biological control and augmentative biological control laid the foundation for progress during the second decade of the 21st century as the country advanced towards conservation biological control.

Initially inventories were drawn up and explorations were undertaken in order to explore the unknown biodiversity of the main groups of endemic natural enemies with a potential to become biological control agents (Milán et al., 2008; Ceballos et al., 2011; Rodríguez et al., 2012; Gómez et al., 2012). Today that objective remains (Hernández-Ochandía, 2014; Hastie-Navarro et al., 2014) and two others have been added: establish a baseline in order to identify tendencies in fluctuations of biological diversity and gather information that substantiates and facilitates the implementation of policies and strategies for their conservation management.

CBC is the intentional introduction of an exotic biological control agent for its permanent establishment and long-term control purposes (Eilenberg et al., 2001). The country with the highest number of releases of natural enemies as part of a CBC strategy is the United States: 1,956 releases between 1870 and 2010 (Cock et al., 2016). In Latin America and the Caribbean, the number of releases of natural enemies varies by country. Of the 33 countries in the region, in eight there have been more than 40 releases during the same period of time: Chile 95, Barbados 87, Trinidad and Tobago 78, Mexico 74, Peru 51, Bahamas 49, Brazil 48, and Saint Kitts and Nevis 47 (Cock et al., 2016). In Cuba, there have been less than 20 imports of entomophagous insects between 1910 and 2010.

In 1917, Mario Calvino, director of the Experimental Agronomic Station at Santiago de las Vegas, carried out the first introduction of a natural enemy. The predator C. montrouzieri was imported from California to be used on sugarcane, banana, and pineapple plantations, as well as on other crop varieties to control Pseudococcus spp. (Milán et al., 2005; Kairo et al., 2013). C. montrouzieri did not establish itself and over time it was necessary to carry out further introductions.

The second import of C. montrouzieri occurred in the 1960s from the USSR (Kairo et al., 2013), and the third in 2000 from Trinidad and Tobago, in light of the forecasted entry into Cuba of Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae). A methodology for its mass reproduction was drawn up; the breeds were carried out in 13 provincial plant-health laboratories and releases began thereafter (Milán et al., 2005). This was one of the few natural enemies introduced in Cuba using ABC.

In 1928, in response to a proposal by S.C. Bruner and O. Arango, R. cardinalis was introduced from Florida, United States, for the control of I. purchasi, the cottony cushion scale of citrus (DeBach and Rosen, 1991). R. cardinalis became established and resulted in effective control that continues today.

Between 1930 and 1931, there were five imports of two predators, C. clauseni and S. smithianus, and three parasitoids, E. serius, E. divergens, and E. smithi, for the control of A. woglumi (citrus blackfly) (DeBach and Rosen, 1991). E. serius was permanently established and A. woglumi ceased to be a pest, such that it is now called an insect relic. The report prepared by Cock et al. (2009) for the FAO’s Genetic Resource Commission lists this as one of the most notable success stories in the introduction of natural enemies. Yet C. clauseni did not become established, even though it persists in very small populations in crops other than citrus (DeBach and Rosen, 1991). Some years ago it was found in the Sierra del Rosario, Pinar del Río, during a study on beetles carried out between 2001 and 2005 (Fernández et al., 2014). S. smithianus was unable to established itself either.

The end of the 1930s brought a phase of CBC to a close. Between 1934 and 1939 L. C. Scaramuzza introduced two parasitoids from Brazil to be mass reproduced and released in sugarcane fields: P. claripalpis and M. minense (Amazon fly) (Fernández, 2002). Imports were later to continue but at a much slower pace. The last introduction, of A. kamali, is more recent, imported from the Island of Margarita for the control of M. hirsutus (Jiménez et al., 2015).

From this overview, we can see that the CBC strategy is not what has predominated in BC in Cuba. The introduction of natural enemies has its risks, but there was no awareness of potential problems until late in the 20th century. It is possible for certain imported species to become invasive species, which has occurred in various regions of the world with the general predator Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) (Evans y Snyder, 2011; Koren et al., 2012; Bahlai et al., 2014).

ABC is the use of live organisms for pest control when control is being done exclusively by the organism that was released (Eilenberg et al., 2001). ABC involves mass production and release of large quantities of natural enemies and constitutes a solution for reducing or eliminating the use of pesticides. ABC is the strategy that has been prioritized in Latin America and the Caribbean and in Cuba.

Research in this area during the 1980s and 1990s was characterized by a search for native natural enemies (insects, bacteria, fungi, nematodes, and mites), bioecology studies, possible target organisms, methods of rudimentary and semi-industrial mass reproduction (for bacteria and fungi), efficiency tests, ecotoxicology, and methods of release and/or application (Fernández-Larrea, 2007; Massó, 2007; Rodríguez et al., 2012; Hidalgo, 2013; Rodríguez et al., 2013).

Entomophagous insects

Entomophagous insects used as ABC can be divided into two groups: parasitoids and predators. Cuba has emphasized research with parasitoids and especially those of two genera, the tachinid fly Lixophaga and the tiny wasp Trichogramma (Table 2).

Table 2

Principal parasitoid and predator insects reproduced in the Centers for Reproduction of Entomophages and Entomopathogens, hosts, and prey that they consume, Cuba 1998–2007. DOI: https://doi.org/10.1525/elementa.326.t2

Parasitoids/predatorsOrder: FamilyHosts/prey

 
Trichogramma spp. Westwood Hymenoptera: Trichogrammatidae Parasitoid of lepidoptera eggs 
Lixophaga diatraea (Townsend) Diptera: Tachinidae Parasitoid of Diatraeae saccharalis and other lepidoptera larva 
Eucelatoria sp. (Townsend) Diptera: Tachinidae Parasitoid of lepidoptera larva 
Tetrastichus howardi (Olliff) Hymenoptera: Eulophidae Parasitoid of insect pupae 
Euplectrus sp. Howard Hymenoptera: Eulophidae Parasitoid of immature insects 
Telenomus sp. Haliday Hymenoptera: Platygastridae Parasitoid of lepidoptera eggs 
Cephalonomia stephanoderis Betrem Hymenoptera: Bethylidae Parasitoid of adult borers of the coffee tree 
Cryptolaemus montrouzieri 
Mulsant Coleoptera: Coccinellidae Mealy bugs (pseudococcids) and aphids 
Coleomegilla cubensis Casey Coleoptera: Coccinellidae Aphids, mites, and immature lepidoptera 
Cycloneda sanguinea limbifer Casey Coleoptera: Coccinellidae Aphids and white flies 
Chrysopa spp. Leach in Brewster Neuroptera: Chrysopidae Aphids, thrips, white flies, mites, and immature lepidoptera 
Orius insidiosus Say Hemiptera: Anthocoridae Thrips, white flies, and mites 
Zelus longipes L. Hemiptera: Reduviidae Lepidoptera larva 
Parasitoids/predatorsOrder: FamilyHosts/prey

 
Trichogramma spp. Westwood Hymenoptera: Trichogrammatidae Parasitoid of lepidoptera eggs 
Lixophaga diatraea (Townsend) Diptera: Tachinidae Parasitoid of Diatraeae saccharalis and other lepidoptera larva 
Eucelatoria sp. (Townsend) Diptera: Tachinidae Parasitoid of lepidoptera larva 
Tetrastichus howardi (Olliff) Hymenoptera: Eulophidae Parasitoid of insect pupae 
Euplectrus sp. Howard Hymenoptera: Eulophidae Parasitoid of immature insects 
Telenomus sp. Haliday Hymenoptera: Platygastridae Parasitoid of lepidoptera eggs 
Cephalonomia stephanoderis Betrem Hymenoptera: Bethylidae Parasitoid of adult borers of the coffee tree 
Cryptolaemus montrouzieri 
Mulsant Coleoptera: Coccinellidae Mealy bugs (pseudococcids) and aphids 
Coleomegilla cubensis Casey Coleoptera: Coccinellidae Aphids, mites, and immature lepidoptera 
Cycloneda sanguinea limbifer Casey Coleoptera: Coccinellidae Aphids and white flies 
Chrysopa spp. Leach in Brewster Neuroptera: Chrysopidae Aphids, thrips, white flies, mites, and immature lepidoptera 
Orius insidiosus Say Hemiptera: Anthocoridae Thrips, white flies, and mites 
Zelus longipes L. Hemiptera: Reduviidae Lepidoptera larva 

Source: Modified from Fuentes et al. (1998) and Massó (2007).

After reviewing the history of BC in Cuba and the world, it is not difficult to understand why this tendency persists. L. diatraeae is a parasitoid of D. saccharalis, the insect that produces the greatest losses in sugarcane (this has been one of the Cuban economy’s most important crops since the 18th century), and Trichogramma is the most used parasitoid in ABC programs in the world.

Predatory insects have received less attention than parasitoids. The latter are produced in limited numbers to be used in inoculative releases, depending on the needs of each region. Until around 2005, the predators that were most produced by the CREE were the chrysopidae; this tendency changes following the reintroduction of the coccinellid C. montrouzieri in 2000. In 2007, C. montrouzieri was being reproduced in 16 CREEs and C. cubensis in two (Massó, 2007). Entomophagous insects (parasitoids and predators) are not formally registered in Cuba.

Entomophagous mites

Research on predatory mites began later than on entomophagous insects. The taxonomic identification of mites from the Phytoseiidae family began in the 1970s. The Phytoseiidae are the most common natural enemies of the phytophagous mites; 20 genera and more than 60 species have been documented (Rodríguez et al., 2013). Among the most studied species are P. macropilis and Amblyseius largoensis (Muma) (Acari: Mesostigmata: Phytoseiidae) (Rodríguez et al., 2013; Hastie-Navarro et al., 2014). Unlike other BCA groups, the use of these predators in inoculative strategies has been limited by their scarcity, in spite of the fact that different alternatives have been studied for mass reproduction with encouraging results (Rodríguez et al., 2013). They are currently being reproduced solely in the CREE of Villa Clara province. Studies on the effectiveness of new species and mass reproduction methods continue (Pérez et al., 2014; Rodríguez et al., 2015). Predatory mites are not formally registered in Cuba.

Microbial biological control agents

Microbial biological control agents (MBCA) appeared on the scene when there was a certain awareness and understanding of the need and importance of using insects as BCA. The MBCA produced in Cuba belong to the following groups: bacteria and entomopathogenic fungi (Fernández-Larrea, 2013), antagonistic fungi (Martínez et al., 2013), and bacteria and nematophagous fungi (Hidalgo, 2013; Marín et al., 2013). Research has been done on antagonistic bacteria and with entomopathogenic virus, but the BCA that belong to the groups are not in a mass-production phase; no research is carried out on protozoans.

The MBCA that are most produced are the bacteria B. thuringiensis, the entomopathogenic fungi B. bassiana, and the antagonistic fungi Trichoderma spp. For many years B. thuringiensis was the only bacteria produced in the country to control harmful organisms on agricultural crops. More recently, the production of Tsukamurella paurometabola (Steinhaus) (Actinomycetales: Tsukamurellaceae) strain C-924 began to control nematodes.

The MBCA are registered and controlled in Cuba, unlike insects and entomophagous mites, which are not registered; but no single registry for these agents exists. The MBCA are on the Official List of Authorized Pesticides, published by the Central Registry of Pesticides, under the category of biological pesticides, together with the chemical-synthesis pesticides and those of natural origin (botanical extracts). Even though MBCA have been used for over 50 years in several areas, no specific regulation has been approved for their registry and control. In 2007, a joint resolution was approved in the Ministry of Agriculture and the Ministry of Public Health to approve and put into effect the Regulation for the Use of Formulated Pesticides. This resolution appears in an appendix titled “Procedures for the registry of biological pesticides” (MINSAP, 2007). An up-to-date list of registered MBCA appears in Table 3. The registry of agents formulated on the basis of Trichoderma (MINAG, 2016) is still pending.

Table 3

Registered microbial biological control agents produced in Cuba, updated in 2016. DOI: https://doi.org/10.1525/elementa.326.t3

MicroorganismRegistered productOrganism/culture

 
Beauveria bassiana sensu lato (Bals.-Criv.) Vuill. (Hypocreales: Cordycipitaceae) 202/14 Beauveria bassiana L 108 conidium/mL, INISAV Lissorhoptrus brevirostris (Suffrian) (Coleoptera: Curculionidae)/rice (Oryza sativa L.) 
  Cylas formicarius (Fabricius)
(Coleoptera: Brentidae)/sweet potato (Ipomoea batatas (L.) Lam.)
Pachnaeus litus (Germar) (Coleoptera: Curculionidae)/citrus
Cosmopolites sordidus (Germar) Marshall, G.A.K. (Coleoptera: Curculionidae)/banana 
B. bassiana cepa MB-1 203/14 Bibisav –2 bait, 109 conidium/g, INISAV Atta insularis Guérin-Méneville (Hymenoptera: Formicidae) 
Metarhizium anisopliae sensu lato (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) 169/15 Metarhizium anisopliae P 109 conidium/g, INISAV L. brevirostris/rice
C. sordidus/banana
Prosapia bicincta fraterna (Say) (F.) (Hemiptera: Cercopidae) y Mocis sp./grasses 
Lecanicillium lecanii (Zimm.) Zare & W. Gams (Hypocreales: Cordycipitaceae) 67/15 Verticillium lecanii 108conidios/mL, INISAV
168/15 Verticillium lecanii 109conidium/mL, INISAV 
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)/bean (Phaseolus vulgaris L.), vegetables and tomatoes (Solanum lycopersicum L.) 
Pochonia chlamydosporia var. catenulata (Goddard) Zare & W. Gams (Hypocreales: Cordycipitaceae) cepa Vcc-108, IMI SD 187 189/14 KlamiC, CENSA, MES Meloidogyne Göldi (Nematoda: Meloidogynidae)/organiponic vegetables, intensive gardens, and protected crops 
Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) var. kurstaki 196/14 Bacillus thuringiensis L 109esporas/ mL, INISAV Lepidoptera larva/sweet potato, bean, cucurbits, tomato, grasses and fodder, tobacco, cassava
(Manihot esculenta Crantz), soy (Glycine max (L.) Merr.), corn (Zea mays L.), potato (Solanum tuberosum L.) and pepper (Capsicum annuum L.)
Plutella xylostella L. (Lepidoptera: Plutellidae)/cabbage (Brassica oleracea L. var. capita) and watercress (Nasturtium officinale R. Br.) 
B. thuringiensis var. israeliensis serotype H-14 195/14 Bactivec SC 3 × 108 spores/mL, Labiofam Mosquito larva 
B. sphaericus cepa 2362 114/13 Griselesf 2362 SC, 3 × 109 spores/mL, Labiofam Mosquito larva 
Tsukamurella paurometabola (Steinhaus) (Actinomycetales: Tsukamurellaceae) strain C-924 057/12 HeberNem-L >5 × 1011 UFC/mL, CIGB Camagüey 115/13 HeberNem-S >3 × 1014 UFC/mL, CIGB Camagüey Nematodes/banana, guava tree (Psidium guajava L.) and in vegetables in protected and semi-protected crops 
MicroorganismRegistered productOrganism/culture

 
Beauveria bassiana sensu lato (Bals.-Criv.) Vuill. (Hypocreales: Cordycipitaceae) 202/14 Beauveria bassiana L 108 conidium/mL, INISAV Lissorhoptrus brevirostris (Suffrian) (Coleoptera: Curculionidae)/rice (Oryza sativa L.) 
  Cylas formicarius (Fabricius)
(Coleoptera: Brentidae)/sweet potato (Ipomoea batatas (L.) Lam.)
Pachnaeus litus (Germar) (Coleoptera: Curculionidae)/citrus
Cosmopolites sordidus (Germar) Marshall, G.A.K. (Coleoptera: Curculionidae)/banana 
B. bassiana cepa MB-1 203/14 Bibisav –2 bait, 109 conidium/g, INISAV Atta insularis Guérin-Méneville (Hymenoptera: Formicidae) 
Metarhizium anisopliae sensu lato (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) 169/15 Metarhizium anisopliae P 109 conidium/g, INISAV L. brevirostris/rice
C. sordidus/banana
Prosapia bicincta fraterna (Say) (F.) (Hemiptera: Cercopidae) y Mocis sp./grasses 
Lecanicillium lecanii (Zimm.) Zare & W. Gams (Hypocreales: Cordycipitaceae) 67/15 Verticillium lecanii 108conidios/mL, INISAV
168/15 Verticillium lecanii 109conidium/mL, INISAV 
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)/bean (Phaseolus vulgaris L.), vegetables and tomatoes (Solanum lycopersicum L.) 
Pochonia chlamydosporia var. catenulata (Goddard) Zare & W. Gams (Hypocreales: Cordycipitaceae) cepa Vcc-108, IMI SD 187 189/14 KlamiC, CENSA, MES Meloidogyne Göldi (Nematoda: Meloidogynidae)/organiponic vegetables, intensive gardens, and protected crops 
Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) var. kurstaki 196/14 Bacillus thuringiensis L 109esporas/ mL, INISAV Lepidoptera larva/sweet potato, bean, cucurbits, tomato, grasses and fodder, tobacco, cassava
(Manihot esculenta Crantz), soy (Glycine max (L.) Merr.), corn (Zea mays L.), potato (Solanum tuberosum L.) and pepper (Capsicum annuum L.)
Plutella xylostella L. (Lepidoptera: Plutellidae)/cabbage (Brassica oleracea L. var. capita) and watercress (Nasturtium officinale R. Br.) 
B. thuringiensis var. israeliensis serotype H-14 195/14 Bactivec SC 3 × 108 spores/mL, Labiofam Mosquito larva 
B. sphaericus cepa 2362 114/13 Griselesf 2362 SC, 3 × 109 spores/mL, Labiofam Mosquito larva 
Tsukamurella paurometabola (Steinhaus) (Actinomycetales: Tsukamurellaceae) strain C-924 057/12 HeberNem-L >5 × 1011 UFC/mL, CIGB Camagüey 115/13 HeberNem-S >3 × 1014 UFC/mL, CIGB Camagüey Nematodes/banana, guava tree (Psidium guajava L.) and in vegetables in protected and semi-protected crops 

Source: MINAG (2016).

Trichoderna Persoon (Ascomycota: Hypocreales: Hypocreaceae) is the most investigated and most used antagonist in the world. One of its most notable characteristics is its variety of antagonistic action modes (Martínez et al., 2013; Olmedo and Casas-Flores, 2014). Trichoderma is an especially important MBCA for Cuban agriculture since there are numerous alternatives in the country that reduce dependency on insecticides, either by substituting different BCA or through their removal from the registry (when their use is prohibited), or though deeper changes occurring in agroecosystem management that go quite a bit beyond managing harmful organisms.

The question of fungicides is very different since fewer alternatives exist to address diseases, in addition to the special and increasingly variable climatic conditions of a tropical country, and a growing tendency for conditions to continue that favor the appearance of epiphitoties. Research undertaken between 2005 and 2015 in seven provinces to evaluate trends in pesticide use, biological control agents, and other practices of managing pests showed that fungicides are the pesticides that are most widely applied. The number one product being consumed is Mancozeb (Pérez et al., 2010; Hernández and Pérez, 2012; Figueroa and Pérez, 2012). The use of Mancozeb poses risks for human health (PAN International, 2016), and there is little awareness of its risks.

In addition to the health risks, another problem merits analysis. The use of fungicides in Cuban agriculture needs to be reevaluated and viewed from a perspective different from what has prevailed until now. Such an evaluation needs to consider not only the control of phytopathogens, but also the fact that an excessive use of fungicides destroys the microorganisms that defend plants. How these defense mechanisms work has to do with biological control for conservation.

By analyzing this information, we can understand the importance of ongoing research on Trichoderma and the priority that should be given to its production. Trichoderma is applied yearly on more than a half-million hectares (Vázquez and Pérez, 2016). We should also establish new research objectives with other MBCA for which production technologies have been established, as is the case of P. chlamidosporia var. catenulata and T. paurometabola. Research on the antagonistic bacteria T. paurometabola strain C-924 has diversified and its potential as a BCA for phytopatogenic fungi is being determined (Marín et al., 2013).

Entomopathogenic nematodes

Within the set of organisms used as BCA, entomopathogenic nematodes (EPN) are the most recent. Documented EPN for Cuba belong to the Steinernema and Heterorhabditis genera. The latter appears most frequently and is the genus where the most-used strains are located, i.e., Heterorhabditis indica Poinar, Karunakar & David (Nematoda: Rhabditida: Heterorhabditidae) strain HI-24, Heterorhabditis spp. Strains CIAP-DEY-6, CIAP DEY-7, and H. bacteriophora strain HC1 (Rodríguez et al., 2012).

Twenty years elapsed from the time the first strains were isolated until rudimentary technology for mass production was in place. The H. bacteriophora species strain HC1 was the first to be used. This strain and the method for its reproduction were introduced in 1994 in the national program of biological control within the ex-Ministry of Sugar. By 2012, it was being reproduced in 33 CREEs (Rodríguez et al., 2012).

EPNs are recommended for the control of a numerous group of harmful organisms: C. formicarius/sweet potato, S. frugiperda/corn, Diaphania hyalinata L. (Lepidoptera: Pyralidae)/cucurbits, C. sordidus/banana, pseudococcids/coffee trees, pineapple, ornamentals, butterfly (Hedychium coronarium J. Koenig), P. xylostella/cabbage, lepidoptera/tomato, L. brevirostris/rice, P. litus/citrus, A. insularis/ornamentals, H. virescens/tobacco, H. hampei/coffee trees and scarab beetles/pineapple and guava trees (Rodríguez et al., 2011; Rodríguez et al., 2012). EPNs are not subject to registry.

CBC of natural enemies is defined as the modification of the environment or existing practices to protect and encourage natural enemies or other organisms to reduce the effect of pests (Eilenberg et al., 2001). The conservation of natural enemies is closely related to the design of the agroecosystem (Altieri and Nicholls, 2010) and the design is an essential element to take into account in the conversion of conventional agricultural systems to sustainable agricultural systems. Conversion is a gradual process that occurs in stages or levels. On large landholdings, it occurs on three levels, and on the scale of a country’s entire food system, it occurs on five levels (Gliessman, 2015). The CBC strategy is closely tied to level 3, i.e., the redesign of agroecosystems to make them work based on new ecological processes.

Knowledge of how relationships between different components of the agroecosystem affect the ecosystem services provided by the biological control of pests allow designs to be built that enhance this service. The conversion that began in Cuba during the 1990s and still implemented at the country level (Funes and Vázquez, 2016) has produced changes in Cuba’s agricultural outlook and thinking, which promotes better understanding of why it is necessary to continue conserving natural enemies.

Among the factors that have contributed to CBC in Cuba are:

  1. The achievements and advances in ABC that laid a firm foundation for CBC of natural enemies;

  2. The accumulation of positive experiences and new knowledge derived from the implementation of BC since the beginning of the 20th century;

  3. The territorial programs of pest management that are integrated in BC;

  4. The changes in land-management policies that led to an increase in the number of cooperatives, a downsizing of production units, and an increase in agrobiodiversity;

  5. The adoption of BC by agricultural producers;

  6. The adoption of agroecological management of pests in urban, suburban, and family agriculture; and

  7. The application of BC with an ecosystems focus.

BC is not implemented as just another technology without considering the set of components that make up the agroecosystem and the way that these are interrelated. It is precisely where an ecosystems focus has prevailed in production units, systems, and regions that there has been the most progress. The steps taken in advancing toward CBC can be observed in the agroecosystems of urban, suburban, and family agriculture and in the production units organized in the Agroecological Movement of the National Association of Small Agricultural Producers (ANAP).

Even so, and in spite of the fact that the road to conservation has been built over solid foundations, we say that it is the least visible. Why the least visible? There are several explanations. First, the work of natural enemies in the countryside can go unnoticed even with the best experts, other than a small group of specialists who do research on this subject. Second, people may have information on how many kilos of a BCA, for example, B. bassiana or Trichoderma spp., are applied in a certain agroecosystem, or on how many hectares BCAs should be applied or released, but it is highly unlikely that they would have information regarding the populations of natural enemies that are present at any given moment in a sown field or locale, and even less likely if it is a parasitoid, predatory mite, or entomopathogenic nematode. This is so for above-ground organisms. For those that live underground, the chances are even slimmer, because it is an environment that has been scarcely studied and thus less is known about it.

Moreover, we must factor in the scarce assessment and dissemination of the goods and services offered by biological diversity and the fact that education and public awareness at all levels regarding conservation of biological diversity is still insufficient. This situation is clearly described in the Fifth National Report on the Convention on Biological Diversity of the Republic of Cuba (CITMA, 2014).

Cuban policy on biological diversity contributes to the goal of conservation of natural enemies. The “National Program on Biological Diversity” was presented in February 2016 for the years 2016 to 2020. This program took into account the adaptation in Cuba of the 20 Aichi Goals (international goals). Objective B, “Control the main threats to biological diversity and promote sustainable use,” corresponds to Aichi Goal 4 and to Guideline 120 of Cuban economic policy. Action F states, “Undertake actions that contribute to the agroecological management of pests” (CITMA, 2016).

There are numerous practices that are a part of an applied CBC strategy (Pérez, 2007; Wyckhuys, 2013). These include notably the management of reservoirs of natural enemies by agricultural producers. In Cuba it is thought that reservoir management within small producers’ conservation practices had its origin in the tradition of taking ant nests, of the Pheidole megacephala Fabricius (Hymenoptera: Formicidae) species, to sweet-potato fields to control C. formicarius, its principal pest. In the 1980s, the observation of this tradition stimulated interest in studying these predators (Pérez, 2007). The release of this predator from the producers’ reservoirs on their land has been stable over time. Between 2004 and 2014, the predator was released yearly on more than 15,000 hectares (Vázquez and Pérez, 2016).

Other ways that reservoirs are being used today include: a) plant reservoirs are very common in urban, suburban, and family agroecosystems (INIFAT, 2018); and b) the application of a method of rustic breeding of coccinellids and two of their preferred prey, i.e., pseudococcids and aphids. Rustic insectariums are being used to reproduce the coccinellids C. cubensis, C. sanguinea limbifer, Hippodamia convergens Mulsant (Coleoptera: Coccinellidae), and Chilocorus cacti L. (Coleoptera: Coccinellidae) (Milán et al., 2010). In 2010, there were 118 insectariums in the provinces of Cienfuegos, Matanzas, Camagüey, Las Tunas, Granma, ex-City of Havana (today Havana), and ex-Havana (today Artemisa and Mayabeque.)

The contribution made by BC to the sustainability of the agri-food system is undeniable. This article has discussed evidence that supports this claim. Twenty-six years have passed since the transformation of Cuban agriculture began in search of sustainability. The events that have happened and the accumulated experience allow us to reflect on the lessons that were learned. The road to sustainability is far from being clear and well-charted; it was built slowly, step by step.

There are many questions to be answered but what is clear is the conviction that the solution to the problem of pests from an ecological standpoint does not lie in the quantity of BCA that are applied, nor in the number of agroecological practices that are undertaken. In the end, the secret lies in the optimization of ecosystem services, which sustain the necessary resources for ecosystems to work. We conclude by highlighting the idea that the biggest contribution of biological control to the agroecological management of pests is in the conservation of natural enemies and the gradual increase in biological diversity, which will move us closer to better health in the fields of human, animal, vegetable, and ecosystem wellbeing.

We wish to thank Dr. Margarita Fernández, executive director of the Vermont Caribbean Institute, for her invitation to present a paper at this forum and for her constant cooperation. We also wish to thank editors Dr. Anne R. Kapuscinski (editor-in-chief) and Dr. Erin Nelson (guest editor) for their observations; we are particularly indebted to the anonymous reviewers for their valuable recommendations.

Elementa would like to thank Michael Pickard for translation support.

The authors have no competing interests to declare.

  • Contributed to conception and design: NPC, LM, LCJ

  • Contributed to acquisition of data: NPC, LM, LCJ

  • Contributed to analysis and interpretation of data: NPC, LM

  • Drafted and/or revised the article: NPC

  • Approved the submitted version for publication: NPC, LM, LCJ

1
Altieri
,
MA
and
Nicholls
,
C
.
2010
.
Diseños agroecológicos para incrementar la biodiversidad de la entomofauna benéfica en los agroecosistemas
. 1era Edición.
Medellín, Colombia
.
Sociedad Científica Latinoamericana de Agroecología (SOCLA)
.
2
Bahlai
,
CA
,
Colunga-Garcia
,
M
,
Gage
,
SH
and
Landis
,
DA
.
2014
.
The role of exotic lady beetles in the decline of native lady beetle populations: Evidence from long-term monitoring
.
Biol Invasions
17
(
4
):
1005
1024
. DOI:
3
Bale
,
JS
,
van Lenteren
,
JC
and
Bigler
,
F
.
2008
.
Biological control and sustainable food production
.
Phil Trans R Soc B
363
:
761
776
. DOI:
4
Bettiol
,
W
,
Rivera
,
MC
,
Mondino
,
P
,
Montealegre
,
JR
y
Colmenárez
,
YC
. (eds.)
2014
.
Control biológico de enfermedades de plantas en América Latina y el Caribe
.
Facultad de Agricultura, Universidad de la República
.
Montevideo
.
5
Ceballos
,
M
,
Leyanis
,
H
,
Chico
,
R
y
Sánchez
,
A
.
2011
.
Cálcidos parasitoides (Hymenoptera, Chalcidoidea) asociados a Coccoidea (Hemiptera) en cocotero (Cocos nucifera L.) (Arecaceae)
. Rev Protección Veg
26
(
1
):
62
65
.
6
CITMA
.
2014
.
V Informe Nacional al Convenio Sobre la Diversidad Biológica
. República de Cuba.
Ministerio de Ciencia, Tecnología y Medio Ambiente
,
La Habana, Cuba
.
7
CITMA
.
2016
.
Cuba. Metas nacionales para la diversidad biológica 2016–2020
. Proyecto PNUD/GEF Plan Nacional de Diversidad Biológica para apoyar la implementación del Plan Estratégico del CDB 2011–2020 en la República de Cuba.
Ministerio de Ciencia, Tecnología y Medio Ambiente
,
La Habana, Cuba
.
8
Cock
,
MJW
,
Murphy
,
ST
,
Kairo
,
MTK
,
Thompson
,
E
,
Murphy
,
RJ
and
Francis
,
AW
.
2016
.
Trends in the classical biological control of insect pests by insects: An update of the BIOCAT database
.
Bio Control
61
:
349
363
. DOI:
9
Cock
,
MJW
,
van Lenteren
,
JC
,
Brodeur
,
J
,
Barratt
,
BIP
,
Bigler
,
F
,
Bolckmans
,
K
,
Cônsoli
,
FL
,
Haas
,
F
,
Mason
,
PG
and
Parra
,
JRP
.
2009
.
The use and exchange of biological control agents for food and agriculture
. Report prepared for the FAO Genetic Resources Commission by the IOBC Global Commission on Biological Control and Access and Benefit Sharing.
IOBC
,
Bern
.
10
DeBach
,
P
and
Rosen
,
D
.
1991
.
Biological control by natural enemies
. 2nd ed.
Cambridge University Press
,
Cambridge
.
11
Dimmock
,
GW
.
1906
.
Algunas Coccinellidae de Cuba
.
Inf An Est Centr Agron
, 1904–1905:
287
392
.
12
Eilenberg
,
J
,
Hajek
,
A
and
Lomer
,
C
.
2001
.
Suggestions for unifying the terminology in biological control
.
BioControl
46
:
387
400
. DOI:
13
Evans
,
EW
and
Snyder
,
WE
.
2011
. Ladybugs. In:
Simberloff
,
D
and
Rejmánek
,
M
(eds.),
Encyclopedia of Biological Invasions
,
400
404
.
Berkeley
.
University of California Press
.
14
FAO
.
2006
. Report of the Council of FAO 131st Session, Rome,
20–25
Nov
, (CL 131/REP).
15
Febles
,
JM
.
2016
. Análisis y diagnóstico de políticas agroambientales en Cuba.
Fortalecimiento de las políticas agroambientales en los países de América Latina y el Caribe, Proyecto GCP/RLA/195/BRA
.
Organización de las Naciones Unidas para la Alimentación y Agricultura – FAO
.
La Habana
.
16
Fernández
,
I
,
Favila
,
ME
y
López
,
G
.
2014
.
Composición, riqueza y abundancia de coleópteros (Coleoptera) asociados a bosques semideciduos y vegetaciones ruderales en la Sierra del Rosario, Cuba
.
Boletín de la Sociedad Entomológica Aragonesa
54
:
329
339
.
17
Fernández
,
L
.
2002
.
Scaramuzza Pandini: Una personalidad en la historia de la Sanidad Vegetal
.
Fitosanidad
6
(
2
):
51
61
.
18
Fernández-Larrea
,
O
.
2007
.
Past, Present and Future of Biological Control in Cuba
.
Fitosanidad
11
(
3
):
61
66
.
19
Fernández-Larrea
,
O
.
2013
.
Programa para la recuperación de bioplaguicidas, biofertilizantes y bioestimulantes en Cuba
.
Revista Agricultura Orgánica
19
(
2
):
2
5
.
20
Figueroa
,
SI
y
Pérez
,
N
.
2012
.
Tendencias en el uso de plaguicidas en el municipio Colón, provincia Matanzas
.
Revista Agricultura Orgánica
18
(
2
):
10
14
.
21
Fuentes
,
F
.
1994
.
Producción y uso de Trichogramma spp. como regulador de plagas
.
Ediciones RAAA
,
Lima
.
22
Fuentes
,
A
,
Llanes
,
V
,
Méndez
,
F
y
González
,
R
.
1998
.
El control biológico en la agricultura sostenible y su importancia en la protección de la caña de azúcar en Cuba
.
Phytoma
95
:
24
26
.
23
Funes
,
F
y
Vázquez
,
LL
. (eds.)
2016
.
Avances de la Agroecología en Cuba
.
Perico, Matanzas
.
Editora Estación Experimental de Pastos y Forrajes Indio Hatuey
.
24
Gillespie
,
M
and
Wratten
,
SD
.
2012
. Chapter 4 Ecological economics of biodiversity use for pest management. In:
Gurr
,
GM
,
Wratten
,
SD
,
Snyder
,
WE
and
Read
,
DMY
(eds.),
Biodiversity and insect pests: Key issues for sustainable management
,
57
71
.
Oxford
.
Wiley-Blackwell
. DOI:
25
Gliessman
,
SR
.
2015
.
Agroecology: The Ecology of Sustainable Food Systems
. Third Edition,
CRC Press
,
Taylor & Francis Group
.
26
Gómez
,
L
,
Enrique
,
R
,
Rodríguez
,
MG
,
Ramos
,
O
y
Gandarilla
,
H
.
2012
.
Detección de Pasteuria penetrans (Thorne) Sayre y Starr en la región occidental de Cuba
.
Rev Protección Veg
27
(
3
):
162
166
.
27
Hastie-Navarro
,
E
,
Chico-Morejón
,
R
,
Miranda-Cabrera
,
I
,
Pérez-Madruga
,
Y
,
Badii
,
MH
y
Rodríguez-Morell
,
H
.
2014
.
Riqueza y abundancia de ácaros depredadores asociados a plantas de las familias Arecaceae y Musaceae en el municipio San José de las Lajas
.
Métodos en Ecología y Sistemática
9
(
1
):
26
39
.
28
Hernández
,
J
y
Pérez
,
N
.
2012
.
Tendencias en el uso de plaguicidas en Batabanó, provincia de Mayabeque
.
Revista Agricultura Orgánica
18
(
1
):
30
33
.
29
Hernández-Ochandía
,
D
.
2014
.
Potential of native strains of Trichoderma of Meloidogyne incognita (Kofoid & White) Chitwood
.
Rev Protección Veg
29
(
2
):
153
.
30
Hidalgo
,
L
.
2013
.
Investigation, develop and innovation of Pochonia chlamydosporia var. catenulata as a microbial agent for the control of root knot nematodes
.
Rev Protección Veg
28
(
3
):
238
.
31
IARC (International Agency for Research on Cancer)
.
2015a
. IARC Monographs Volume 112: Evaluation of five organophosphate insecticides and herbicides.
Lyon, France
,
20
March
2015. Available at: https://www.iarc.fr/en/media-centre/iarcnews/pdf/Monographs-Q&A.pdf [Accessed 28 July 2018].
32
IARC (International Agency for Research on Cancer)
.
2015b
. Monographs evaluate DDT, lindane, and 2, 4-D. Press Release N° 236.
Lyon, France
,
23
June
2015. Available at: https://www.iarc.fr/en/media-centre/iarcnews/pdf/Monographs-Q&A.pdf [Accessed 28 July 2018].
33
INIFAT
.
2018
.
Lineamientos de la Agricultura Urbana, Suburbana y Familiar para al año 2018
. 21 edición. Grupo Nacional de Agricultura Urbana, Suburbana y Familiar.
Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt, Ministerio de la Agricultura
.
La Habana
.
34
Jiménez
,
J
,
Milán
,
O
,
Massó
,
E
,
Cueto
,
N
,
Matamoros
,
M
,
Piedraita
,
J
,
Crespo
,
K
,
Rosales
,
RM
,
Toscano
,
MN
,
Pérez
,
MC
y
Fiallo
,
RC
.
2015
.
Primera introducción y cuarentena de Anagyrus kamali Moursi (Hymenoptera: Encyrtidae), endoparasitoide solitario de la chinche rosada del hibisco (Maconellicoccus hirsutus Green) en Cuba
.
Fitosanidad
19
(
2
):
99
10
.
35
Kairo
,
MTK
,
Paraiso
,
O
,
Gautam
,
RD
and
Peterkin
,
DD
.
2013
.
Cryptolaemus montrouzieri (Mulsant) (Coccinellidae: Scymninae): A review of biology, ecology, and use in biological control with particular reference to potential impact on non-target organisms
.
CAB Reviews
8
(
005
). DOI:
36
Koren
,
T
,
Hlavati
,
D
,
Rojko
,
I
and
Zadravec
,
M
.
2012
.
First checklist of ladybirds (Coleoptera: Coccinellidae) of Croatia along with new faunistical records
.
Acta entomológica serbica
17
(
1–2
):
107
122
.
37
Marín
,
M
,
Wong
,
I
,
García
,
G
,
Morán
,
R
y
Basulto
,
R
.
2013
.
Actividad antagónica in vitro de Tsukamurella paurometabola C-924 frente a fitopatógenos
.
Rev Protección Veg
28
(
2
):
132
137
.
38
Martínez
,
B
,
Infante
,
D
y
Reyes
,
Y
.
2013
.
Trichoderma spp. and their role in the control of crop pests
.
Rev Protección Veg
28
(
1
):
1
11
.
39
Martínez
,
VR
.
2004
.
100 años de historia al servicio de la agricultura cubana (1904–2004) Estación Experimental Agronómica de Santiago de las Vegas
.
Informe publicado por el Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt, Ministerio de la Agricultura
,
Ciudad de La Habana
.
40
Massó
,
E
.
2007
.
Producción y uso de entomófagos en Cuba
.
Fitosanidad
11
(
3
):
29
39
.
41
Milán
,
O
.
2010
.
Los coccinélidos benéficos en Cuba. Historia y actividad entomófaga
.
Fitosanidad
14
(
2
):
127
135
.
42
Milán
,
O
,
Cueto
,
N
,
Hernández
,
N
,
Ramos
,
T
y
Pineda
,
M
.
2008
.
Prospección de los coccinélidos benéficos asociados a plagas y cultivo en Cuba
.
Fitosanidad
12
(
2
):
71
78
.
43
Milán
,
O
,
Rijo
,
E
y
Massó
,
E
.
2005
.
Introduction, quarantine and development of Cryptolaemus montrouzieri in Cuba
.
Fitosanidad
9
(
3
):
69
76
.
44
MINAG (Ministerio de la Agricultura)
.
2016
.
Lista Oficial de Plaguicidas Autorizados. Registro Central de Plaguicidas de la República de Cuba
.
Ministerio de la Agricultura
,
La Habana
.
45
MINSAP (Ministerio de Salud Pública)
.
2007
. Resolución Conjunta Ministerio de la Agricultura-Ministerio de Salud Pública. Reglamento de uso de formulados plaguicidas.
Gaceta Oficial de la República de Cuba
16
:
77
84
.
Edición Extraordinaria
.
La Habana
, lunes
16
de
abril
de 2007. Año CV, Número.
46
Murguido
,
CA
,
Elizondo
,
AI
,
Moreno
,
D
,
Caballero
,
S
y
de Armas
,
JL
.
2008
.
Liberación de la avispa de Costa de Marfil Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae) en dos localidades el macizo montañoso Guamuhaya, Cuba
.
Fitosanidad
12
(
2
):
83
87
.
47
Olmedo
,
V
and
Casas-Flores
,
S
.
2014
. Chapter 32 Molecular mechanisms of biocontrol in Trichoderma spp. and their Applications in Agriculture. In:
Gupta
,
VK
,
Schmoll
,
M
,
Herrera-Estrella
,
A
,
Upadhyay
,
RS
,
Druzhinina
,
I
and
Tuohy
,
MG
(eds.),
Biotechnology and Biology of Trichoderma
,
429
453
.
The Netherlands
.
Elsevier
.
48
PAN International
(Pesticide Action Network).
2016
.
List of Highly Hazardous Pesticides. PAN International
. Available at: http://www.pan-international.org [Accessed 30 April 2017].
49
Parra
,
JRP
.
2014
.
Biological Control in Brazil: An overview
.
Sci Agric
71
(
5
):
420
429
. DOI:
50
Peña
,
E
,
García
,
M
,
Blanco
,
E
y
Barreras
,
JF
.
2006
.
Introducción de la avispa de Costa de Marfil Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae), parasitoide de la broca del fruto del cafeto Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) en Cuba
.
Fitosanidad
10
(
1
):
33
36
.
51
Pérez
,
N
.
2007
.
Manejo Ecológico de Plagas
. 2da reimpresión, editorial Félix Varela.
Ciudad de La Habana
.
52
Pérez
,
N
,
Infante
,
C
,
Rosquete
,
C
,
Ramos
,
JA
y
González
,
C
.
2010
.
Disminuyendo la relevancia de los plaguicidas. Alternativas a su uso
.
Agroecología
5
:
79
87
.
53
Pérez
,
Y
,
Alonso-Rodríguez
,
D
,
Chico
,
R
y
Rodríguez
,
H
.
2014
.
Cría de Neoseiulus longispinosus (Evans) sobre Tetranychus tumidus Banks utilizando el método de las bandejas
.
Rev Protección Veg
29
(
2
):
141
144
.
54
Pretty
,
JN
. (ed)
2005
.
The pesticide detox towards a more sustainable agricultura
.
London
.
Earthscan
.
55
Rodríguez
,
H
,
Montoya
,
A
,
Miranda
,
I
,
Rodríguez
,
Y
y
Depestre
,
TL
.
2015
.
Biological control of Polyphagotarsonemus latus (Banks) by the predatory mite Amblyseius largoensis (Muma) on sheltered pepper production in Cuba
.
Rev Protección Veg
30
(
1
):
70
76
.
56
Rodríguez
,
H
,
Montoya
,
A
,
Pérez-Madruga
,
Y
y
Ramos
,
M
.
2013
.
Mass rearing of Phytoseiidae predatory mites: Challenges and perspectives in Cuba
.
Rev Protección Veg
28
(
1
):
12
22
.
57
Rodríguez
,
M
,
Acosta
,
S
,
Sao
,
E
,
Barroso
,
F
,
Rodríguez
,
O
y
O’Relly
,
J
.
2001
. Estrategia para la incorporación de Cotesia flavipes Cameron en el programa nacional de lucha biológica en Cuba. In:
Resúmenes IV Seminario Científico de Sanidad Vegetal, Taller de Caña de Azúcar
,
236
.
Matanzas
,
Cuba, junio de
.
58
Rodríguez
,
MG
,
Hernández-Ochandía
,
D
y
Gómez
,
L
.
2012
.
Entomopathogenic nematodes: Historical development and challanges for their efficient use as biological control in Cuban agriculture
.
Rev Protección Veg
27
(
3
):
137
146
.
59
Rodríguez
,
MG
,
Rosales
,
LC
,
Enrique
,
R
,
Gómez
,
L
y
González
,
E
.
2011
.
Los nematodos entomopatógenos y su uso como agentes de control biológico para el manejo de plagas agrarias
.
San José de las Lajas
.
Centro Nacional de Sanidad Agropecuaria
.
60
Rodríguez
,
Y
,
Toledo Duque
,
C
,
Rodríguez
,
LA
,
García
,
M
,
Cabrera
,
D
y
Pérez
,
L
.
2007
.
Introducción, cuarentena de posentrada, reproducción y ciclo biológico en condiciones de laboratorio de Phymastichus coffea LaSalle en Cuba
.
Fitosanidad
11
(
2
):
125
.
61
TFSP (Task Force on Systemic Pesticides)
.
2015
.
Worldwide Integrated Assessment of the Impacts of Systemic Pesticides on Biodiversity and Ecosystems
. Available at: http://www.springer.com/environment/journal/11356 [Accessed 28 July 2018].
62
UN (United Nations)
.
2017
.
Informe de la Relatora Especial sobre el derecho a la alimentación
(A/ARC/34/48).
Asamblea General
. Consejo de Derechos Humanos 34° período de sesiones 27 de febrero a 24 de marzo de 2017.
63
UNEP (United Nations Environment Programme)
.
2006
.
The Strategic Approach to International Chemicals Management
.
SAICM texts and resolutions of the International Conference on Chemicals Management
. SAICM/UNEP/WHO. Available at: www.saicm.org/index.php?menuid=3&pageid=187 [Accessed 28 July 2018].
64
van Lenteren
,
JC
.
2006
.
Ecosystem services to biological control of pests: Why are they ignored?
Proc. Neth. E Entomol. Soc. Meet
17
:
103
111
.
65
van Lenteren
,
JC
.
2012
.
The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake
.
BioControl
57
:
1
20
. DOI:
66
van Lenteren
,
JC
,
Bolckmans
,
K
,
Kohl
,
J
,
Ravensberg
,
WJ
and
Urbaneja
,
A
.
2017
.
Biological control using invertebrates and microorganisms: Plenty of new opportunities
.
BioControl
63
(
1
):
39
59
. DOI:
67
Vázquez
,
L
y
Pérez
,
N
.
2016
. Capítulo 10 Control biológico. In:
Funes
,
F
and
Vázquez
,
L
(eds.),
Avances de la Agroecología en Cuba
,
169
182
.
Perico, Matanzas
.
Editora Estación Experimental de Pastos y Forrajes Indio Hatuey
.
68
Veronelli
,
V
.
2012
. The Future of Biocontrol Industry Witnessing the Last 25 Years. In:
7th Annual Biocontrol Industry Meeting (ABIM)
,
22–24
October
2012.
Lucerna
,
Switzerland
. Available at: http://www.abim.ch [Accessed 28 July 2018].
69
Viewege
,
A
,
Thomas
,
F
and
Döring
,
TF
.
2014
.
Assessing health in agriculture – towards a common research framework for soils, plants, animals, humans and ecosystems
.
J Sci Food Agric
95
(
3
):
438
446
. DOI: .
70
Warner
,
KD
,
Daane
,
KM
,
Getz
,
CM
,
Maurano
,
SP
,
Calderon
,
S
and
Powers
,
KA
.
2011
.
The decline of public interest agricultural science and the dubious future of crop biological control in California
.
Agric Hum Values
28
(
4
):
483
496
. DOI:
71
Weinberg
,
J
.
2008
.
An NGO Guide to SAICM
.
IPEN
. Available at: http://www.ipen.org/campaign/education/introduction%20booklet.html [Accessed 28 July 2018].
72
Wyckhuys
,
KAG
,
Lu
,
Y
,
Morales
,
H
,
Vazquez
,
LL
,
Legaspi
,
JC
,
Eliopoulos
,
PA
and
Hernandez
,
LM
.
2013
.
Current status and potential of conservation biological control for agriculture in the developing world
.
Biological Control
65
:
152
167
. DOI:
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Supplementary Material