Phosphorus is a growing water quality concern in agricultural landscapes. Sources of agricultural phosphorus include synthetic fertilizers and manure application that support crop growth. These sources lead to excess phosphorus in adjacent waterways causing harm to aquatic communities and to human health. Phosphorus is transported downstream contributing to larger pollution issues including eutrophication of freshwater bodies. Conservation practices called Best Management Practices (BMPs) have been developed to manage agricultural phosphorus pollution. One common BMP is a riparian, or streamside, buffer. This BMP allows for the reestablishment of vegetation between an agricultural field and adjacent waterway. Riparian buffers act as a filter strip and are effective for nitrogen, sedimentation, and erosion control. The efficacy of these practices to manage phosphorus, however, is less clear, notably regarding dissolved phosphorus. Dissolved phosphorus is highly bioavailable and ready for plant uptake, contributing to pollution from rapid algae growth. A saturated buffer is a specific type of riparian buffer known to be effective for nitrogen and particulate phosphorus removal, but in some cases has been shown to contribute to dissolved reactive phosphorus (DRP) pollution. Through field data collection, the aim of this case study was to document DRP contributions from a saturated buffer field research site located in Southern Minnesota. In addition, this study documents the drivers of DRP contributions including soil characteristics, microbial community structure, and flooding. Results from the work demonstrate the need to account for dissolved phosphorus in meeting water quality goals through the implementation of agricultural BMPs.
Skip Nav Destination
Article navigation
Article Case|
July 29 2024
Contributions From a Southern Minnesota Saturated Buffer Field Site: Agricultural Best Management Practices and Dissolved Phosphorus Loss
Laura J. Bender,
Laura J. Bender
1Department of Bioproducts and Biosystems Engineering, University of Minnesota, MN, USA
Search for other works by this author on:
Christian F. Lenhart
1Department of Bioproducts and Biosystems Engineering, University of Minnesota, MN, USA
Email: [email protected]
Search for other works by this author on:
Email: [email protected]
Case Studies in the Environment (2024) 8 (1): 2210963.
Citation
Laura J. Bender, Christian F. Lenhart; Contributions From a Southern Minnesota Saturated Buffer Field Site: Agricultural Best Management Practices and Dissolved Phosphorus Loss. Case Studies in the Environment 5 April 2024; 8 (1): 2210963. doi: https://doi.org/10.1525/cse.2024.2210963
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your Institution
15
Views