Land reclamation activities can, directly and indirectly, impact the environment. Examples of direct effects include alterations in coastal geomorphology, variations in the chemical content of water and changes in biological composition along the littoral zone. The indirect impacts can involve geological changes and increase vulnerability to natural disasters. Reclamation processes also result in greenhouse gas (GHG) emissions from vehicle and machinery fuel use and through the release of carbon stored in vegetation, soils and sediment in mangroves and seagrass ecosystems. Considering the global extent of land reclamation, the scale of these emissions is likely to be of widespread interest. The case of Jakarta Bay provides useful insights that can contribute to the improved environmental management of kindred land development projects in Indonesia and other parts of Asia. More than 5,100 ha of new land mass is planned from the Jakarta Bay reclamation. Preliminary analysis suggests that 30% of the planned area will require more than 150.7 million cubic metres of sand sourced from 8,628 ha of marine quarry area. In this study, we examine the sources of GHG emissions in these activities and the potential opportunities available to reduce them. The audience for this paper includes policymakers, environmental practitioners, city developers and postgraduate scholars dealing with land reclamation or other major infrastructure developments.

You do not currently have access to this content.