Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-1 of 1
Keywords: post-harvest physiology of flowers
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
The American Biology Teacher
The American Biology Teacher (2017) 79 (7): 578–583.
Published: 01 September 2017
... and Permissions web page, www.ucpress.edu/journals.php?p=reprints . 2017 indigenous knowledge problem-based learning cooperative learning inquiry post-harvest physiology of flowers Biology teachers and curriculum developers should be reminded of Gibbons’ (2000) concept of mode 2...
Abstract
This article describes a problem-based, cooperative learning activity, where students investigate the role of ethylene in flower senescence. The cooperative learning activity is contextualized in an authentic problem experienced in the cut flower industry: how can the shelf life of cut flowers be prolonged? We describe the procedure for conducting the experiment and show the affectiveness of contextualized science that includes indigenous knowledge—an approach that Gibbons calls “mode 2 knowledge production.” In addition we also give suggestions on how this type of problem-based, cooperative teaching-learning activity can be used in a school biology classroom.