Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-1 of 1
Tyler Schenck
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
The American Biology Teacher (2018) 80 (1): 35–39.
Published: 01 January 2018
Abstract
Plant–pathogen interactions are often omitted as a topic in most introductory and upper-level biology courses. The infection process of the plant pathogen Pythium irregulare on the moss Mnium cuspidatum can be observed and exploited to provide lessons on host–pathogen responses, as well as introduce other biological topics such as microscopy, spectrophotometry, and enzymes. Students can qualitatively analyze plant responses to pathogen infection using microscopy and observe quantitative enzyme responses to draw conclusions. Students are also encouraged to generate hypotheses and test them using this biological system as a method to develop scientific skills.