Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-2 of 2
Jennifer Broo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
The American Biology Teacher
The American Biology Teacher (2018) 80 (4): 272–277.
Published: 01 April 2018
Abstract
Climate change can drive evolution. This connection is clear both historically and in modern times. The three-lesson curriculum described below provides opportunities for students to make connections between climate change and evolution through various modes of inquiry and self-investigation. Students examine how genetic variation may either facilitate or limit the ability for species to survive changing climates through work with the model organism Drosophila melanogaster . Students are asked to layer new understanding of the mechanisms of evolution onto their observations of genetic variation in fruit fly thermotolerance, and then synthesize this information to make predictions regarding the survival of species threatened by climate change.
Journal Articles
Journal:
The American Biology Teacher
The American Biology Teacher (2016) 78 (2): 166–169.
Published: 01 February 2016
Abstract
Students measure and sketch physical characteristics of 15 fossilized horse teeth. Each student group creates a graph that summarizes the trend between age of the fossil and length of the tooth. Plant information cards summarizing the flora of each epoch and guided analysis questions allow students to develop an explanation for the change in horse teeth in response to plant evolution due to a changing climate.