Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-2 of 2
Craig Berg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
The American Biology Teacher (2011) 73 (3): 156–161.
Published: 01 March 2011
Abstract
We present an activity that models the teaching of content knowledge that transfers to many areas of the life sciences and simultaneously targets growth in cognitive development. The activity provides students with concrete objects and thinking experiences that facilitate an understanding of how surface area, in the context of biological systems, is a critical and common factor in life-supporting functions. Alveolus structure and gas exchange in the lungs, nephron structure and water retention in the kidneys, villus structure and nutrient absorption in the small intestine, and root-hair structure and nutrient absorption in plants are all biological examples in which surface area plays a key role in living things. In addition, this activity incorporates components that engage students in thinking about proportional reasoning, as many students lack the proportional thinking skills needed to fully understand this structure/function relationship or to transfer the relationship to a new, but related, situation.
Journal Articles
The American Biology Teacher (1994) 56 (8): 496.
Published: 01 November 1994