Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-4 of 4
Amy Lark
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
The American Biology Teacher
The American Biology Teacher (2018) 80 (2): 92–99.
Published: 01 February 2018
Abstract
Current reform efforts at all levels of biology education advocate for the integration of science content and practices and emphasize the importance of phenomena-driven inquiry. We describe an instructional sequence for teaching evolution by natural selection that addresses these goals by engaging students in parallel selection experiments with biological and digital model organisms. These activities address multiple learning objectives in the AP Biology Curriculum Framework and the Next Generation Science Standards while engaging students in authentic science practices to learn about natural selection. We also report results from pre and post assessments in an AP Biology class which demonstrate students' learning gains and increased acceptance of evolution.
Journal Articles
Journal:
The American Biology Teacher
The American Biology Teacher (2018) 80 (2): 74–86.
Published: 01 February 2018
Abstract
Recent reforms in K-16 science education advocate for the integration of science content and practice. However, engaging students in authentic science practices can be particularly challenging for certain subjects such as evolution. We describe Avida-ED, a research-based platform for digital evolution that overcomes many of the challenges associated with using biological model organisms in the classroom. We then report the findings of a nationwide, multiple-case study on classroom implementation of Avida-ED and its influence on student understanding and acceptance of evolution. We found that engagement in lessons with Avida-ED both supported student learning of fundamental evolution concepts and was associated with an increase in student acceptance of evolution as evidence-based science. In addition, we found a significant, positive association between increased understanding and acceptance. We discuss the implications of supporting reform-based pedagogical practices with tools such as Avida-ED that integrate science content with authentic science practice.
Journal Articles
Journal:
The American Biology Teacher
The American Biology Teacher (2016) 78 (6): 526.
Published: 01 August 2016
Journal Articles
Journal:
The American Biology Teacher
The American Biology Teacher (2014) 76 (7): 450–454.
Published: 01 September 2014
Abstract
New science standards and reform recommendations spanning grades K–16 focus on a limited set of key scientific concepts from each discipline that all students should know. They also emphasize the integration of these concepts with science practices so that students learn not only the “what” of science but also the “how” and “why.” In line with this approach, we present an exercise that models the integration of fundamental evolutionary concepts with science practices. Students use Avida-ED digital evolution software to test claims from a study on mutated butterflies in the vicinity of the compromised Fukushima Daiichi Nuclear Power Plant complex subsequent to the Great East Japan Earthquake of 2011. This exercise is appropriate for use in both high school and undergraduate biology classrooms.