Lists of vestigial biological structures in biology textbooks are so short that some young-Earth creationist authors claim that scientists have lost confidence in the existence of vestigial structures and can no longer identify any verifiable ones. We tested these hypotheses with a method that is easily adapted to biology classes. We used online search engines to find examples of 21st-century articles in primary scientific literature in which biological structures are identified as vestigial. Our results falsify these creationist hypotheses and show that scientists currently identify many structures as vestigial in animals, plants, and single-celled organisms. Examples include not only organs but also cells, organelles, and parts of molecules. Having students repeat this study will give them experience with hypothesis testing, introduce them to primary scientific articles, and further their education on vestigial structures.

Introduction

Many organisms possess biological structures that are recognizable as degenerate versions of their homologs in related organisms and that do not perform the functions that those homologs perform. For example, degenerate eyes in blind cave fishes and cave salamanders are useless for vision (Eigenmann, 1900), and degenerate limbs in numerous lizard species are useless for locomotion (Moch & Senter, 2011). Such degenerate structures are called “vestigial structures” because they are vestiges (remnants) of ancestral structures. Biologists recognize vestigial structures as evidence for biological evolution (Starr & Taggart, 2004; Reece et al., 2011). For example, blind cave fishes and salamanders arguably have eyes only because they inherited them from sighted ancestors.

Until recently the human and ape appendix has been considered a vestigial organ, a remnant of a much larger ancestral cecum. A cecum is a side branch of the large intestine that houses bacteria that break down cellulose, enhancing the digestion of plant matter in herbivorous mammals (Kardong, 2011). However, an anatomical study of primates showed that the appendix of humans and apes is not a remnant of a cecum but is instead an evolutionarily new structure with no homolog in lower primates (Scott, 1980). It appears to function as a protective reservoir for beneficial bacteria that inhabit the colon, a microbial “Noah’s ark” from which beneficial bacteria can repopulate the colon if a disease decimates them (Bollinger et al., 2007).

The recognition of the appendix as vestigial ceased not because it has a function but because it is a newly evolved structure instead of a vestige of an ancestral structure. A structure does not have to be useless or functionless to be a vestige. Even so, scientists generally hesitate to use the term “vestigial” for a structure unless it has lost its most salient previous function. For example, the degenerate pelves of whales currently function as anchors for reproductive structures but are considered vestigial because they have lost their previous function as anchors for hindlimbs that are used in locomotion (Simões-Lopes & Gutstein, 2004). Likewise, the degenerate ink glands of certain marine snails store algal pigments but are considered vestigial because they have lost their previous function as organs of ink production (Prince & Johnson, 2006).

Anti-evolution authors in the young-Earth creationist (YEC) camp have long insisted that all structures previously identified as vestigial are actually misidentified as such (e.g., Morris, 1974; Koop & Schaeffer, 1987; Bergman & Howe, 1990; Bergman, 2000; Menton, 2010). According to the YEC argument, no truly vestigial biological structures exist. Rather, in each case, the structure is functional but its function was unknown when it was labeled as vestigial. Such authors fail to understand that a structure can have a function and yet be a vestige. Nevertheless, some of these YEC authors have noticed something that is worth noticing: Lists of vestigial structures in biology textbooks have dwindled through the decades. These authors use this as evidence that scientists have lost confidence in the existence of vestigial structures or that scientists cannot find more examples of valid vestigial structures (Koop & Schaeffer, 1987; Bergman & Howe, 1990; Bergman, 2000). As one YEC author puts it, “vestigial organs…have now been thoroughly discredited” (Bergman, 2010, p. 63).

Indeed, lists of vestigial biological structures in current biology textbooks are usually quite short, with only one to three examples (e.g., Starr & Taggart, 2004; Reece et al., 2011). This is the case even in textbooks for evolution classes (e.g., Ridley, 2004; Kardong, 2008), one of which does not mention vestigial structures at all (Volpe & Rosenbaum, 2000). It is therefore worth testing the YEC hypotheses that biologists have lost confidence in the existence of vestigial structures and that more examples than those in short textbook lists cannot be found. Both hypotheses make the same prediction: that a review of recent primary scientific literature will find only a small number of examples (or none) of biological structures that are identified as vestigial. This is because scientists primarily communicate via primary literature (technical journals, etc.), not textbooks. Here, we report a test of these YEC hypotheses.

The test described below is one that can be employed as an assignment in a biology class to serve three purposes that are important for science students. First, it involves students in hypothesis testing, which gives them experience with scientific method. Second, it introduces students to primary scientific literature, so that they can see firsthand the ultimate sources of the information that ends up in textbooks and in secondhand reports in popular science magazines. Third, it expands their education on vestigial structures beyond the meager information found in textbooks. All three goals were in fact attained when this test was performed in a class taught by one of us (Senter), in which the rest of us were graduate students.

Methods

We used the search terms “vestigial” and “vestige” to search online databases of primary scientific articles such as JSTOR (http://www.jstor.org) and Science Direct (http://www.sciencedirect.com) for examples of articles in which biological structures are explicitly identified as vestigial. We counted such identifications only if the following five criteria were met: (1) The authors’ wording indicates that they themselves consider the structure vestigial and are not merely citing previous opinions on vestigiality. (2) The authors use the word “vestigial” or “vestige,” not just a synonym (e.g., “rudimentary” or “reduced”). (3) The authors are not describing a rare developmental anomaly. (4) The organism with the vestigial structure is extant. (5) The vestigial structures are not just mentioned in passing but are important to the main focus of the article. To avoid the appearance of “stacking the deck,” we did not use any articles for which any of us was an author.

We used only articles published in the 21st century, to ensure that the identification of a structure as vestigial is recent enough to be considered current. We did not use articles from the year 2000, because that is actually the last year of the 20th century.

Results

In 21st-century articles from primary scientific journals, we found enough examples of biological structures that scientists identify as vestigial to place 64 entries in Table 1. Several of these entries include multiple species or supraspecific taxa. This falsifies the YEC hypotheses that scientists have lost confidence in the existence of vestigial biological structures and that scientists cannot find more than a few examples of vestigial biological structures in nature.

Table 1.

Examples of biological structures that scientists have identified as vestigial in primary scientific journal articles published in the 21st century. N = no function listed by author(s). U = useless structure according to author(s).

TaxonStructureStructure’s Function in Unreduced StateStructure’s Function in Vestigial StateReference(s)
Unicellular Organisms 
Amoebozoa 
Entamoeba histolytica mitochondria ATP synthesis Regoes et al., 2005  
Apicomplexa 
Cryptosporidium parvum mitochondria ATP synthesis Regoes et al., 2005  
Plasmodium falciparum chloroplast photosynthesis Sekiguchi et al., 2002  
Toxoplasma gondii chloroplast photosynthesis Sekiguchi et al., 2002  
Diplomonadida 
Giardia lamblia mitochondria ATP synthesis Fe-S cluster synthesis Regoes et al., 2005  
Euglenozoa 
Astasia longa chloroplast photosynthesis Sekiguchi et al., 2002  
Fungi 
Trachipleistophora humanis mitochondria ATP synthesis Regoes et al., 2005  
Heterokontophyta 
Anthophysa vegetans chloroplast photosynthesis Sekiguchi et al., 2002  
Blastocystis humanis mitochondria ATP synthesis Regoes et al., 2005  
Ciliophrys infusionum chloroplast photosynthesis Sekiguchi et al., 2002  
Pteridomonas danica chloroplast photosynthesis Sekiguchi et al., 2002  
Paraphysomonas chloroplast photosynthesis Sekiguchi et al., 2002  
Spumella chloroplast photosynthesis Sekiguchi et al., 2002  
Multicellular Organisms 
Plantae 
some Arecoideae (a subfamily of palms) male flowers pollen production Ortega-Chávez & Stauffer, 2011  
Gethyum and Gilliesia (South American allioids) stamens pollen production Rudall et al., 2002  
Schiedea (Hawaiian schiedeas) stamens pollen production Golonka et al., 2005  
Consolea spinosissima (a cactus) androecium [in female plants] pollen production Strittmatter et al., 2002  
Consolea spinosissima (a cactus) gynoecium [in male plants] sperm reception; ovule and fruit production Strittmatter et al., 2002  
Fragaria virginiana (strawberry) stamens pollen production Ashman, 2003  
Nemophila menziesii (Baby Blue-eyes) anthers pollen production Gomez & Shaw, 2006  
Penstemon centranthifolius (Scarlet Bugler) and P. rostriflorus (Beakflower Penstemon) stamen pollen production Walker-Larsen & Harder, 2001  
Penstemon ellipticus (Rocky Ledge Penstemon) stamen pollen production increases duration of pollinators’ visits by hindering nectar access Walker-Larsen & Harder, 2001  
Penstemon palmeri (Palmer’s Penstemon) stamen pollen production acts as a lever that increases stigma contact with pollinator Walker-Larsen & Harder, 2001  
Epifagus americana (Beechdrops) chloroplasts photosynthesis Sekiguchi et al., 2002  
Bryozoa 
Calloporidae (a bryozoan family) ooecium protects brood chamber Ostrovsky et al., 2006  
Mollusca 
Dolabifera dolabifera (a sea hare) ink gland defensive ink production algal pigment storage Prince & Johnson, 2006  
Octopus vulgaris (common octopus) shell external protection Napoleão et al., 2005  
Teuthida (squid) phragmocone buoyancy muscle and fin attachment Arkhipkin et al., 2012  
Arthropoda 
Cirripedia (barnacles) abdomen multiple functions Blin et al., 2003  
Carabus solieri (a ground beetle) hind wings flight Garnier et al., 2006  
Formidicae (ants) [workers] spermathecae sperm storage Bowsher et al., 2007; Gotoh et al., 2013  
Formicidae [workers of most species] wing imaginal discs wing production Bowsher et al., 2007  
Diacamma (a genus of wingless ants) [workers] wings flight social display of reproductive status Miura, 2005  
Apis cerana (eastern honeybee) and A. mellifera (European honeybee) [workers] spermathecae sperm storage Gotoh et al., 2012 
Lepidoptera larvae (caterpillars) crop food storage defensive regurgitation Grant, 2006  
Chondrichthyes 
Orectolobus maculatus (wobbegong shark) complementarity-determining region of IgNAR antibody adhesion to antigen Streltsov et al., 2004  
Actinopterygii 
Actinopterygii vertebral arches of posterior tail muscle attachment Bensimon-Brito et al., 2012  
Acipenseriformes (paddlefishes and sturgeons) pulmonary artery blood transport to gas bladder blood transport elsewhere Longo et al., 2013  
Astyanax mexicanus (blind cavefish) eyes vision regulation of circadian rhythms Espinasa & Jeffery, 2006; Franz-Odendaal & Hall, 2006; Yoshizawa & Jeffery, 2008  
Echidna nebulosa (snowflake moray) and Muraena retifera (reticulate moray) pectoral girdle support for pectoral fin Mehta & Wainwright, 2007  
Actinistia 
Latimeria (coelacanths) lung gas exchange Longo et al., 2013  
Latimeria pulmonary vein blood transport from lung to heart Longo et al., 2013  
Amphibia 
Plethodon cinereus (red-backed salamander) and Eurycea (brook salamanders) fourth epibranchial gill support Kerney et al., 2012  
Sirenidae (legless salamanders) pectoral girdle forelimb support Bejder & Hall, 2002  
Gegenophis ramaswamii (a caecilian) fourth epibranchial gill support Müller et al., 2005  
Squamata 
Pygopodidae (flap-footed lizards) hindlimbs locomotion Brandley et al., 2008  
Ophisaurus apodus (European legless lizard) hindlimbs locomotion Bejder & Hall, 2002; Brandley et al., 2008  
Bipes (a genus of worm lizarda) pelvic girdle hindlimb support Kearney, 2002  
Bipes hindlimbs locomotion Kearney, 2002  
Rhineura floridana (Florida worm lizard) eyes vision Kearney et al., 2005  
Rhineura floridana jugal bone forms lower border of eye socket Kearney et al., 2005  
Blanus (a genus of worm lizards) hindlimbs locomotion Kearney, 2002  
Feylinia (a skink genus) sternum forelimb muscle attachment Kearney, 2002  
Jarujinia bipedalis (a skink species) forelimbs locomotion Chan-ard et al., 2001  
some Serpentes (snakes) hindlimbs locomotion Kearney, 2002; Brandley et al., 2008  
Aves 
Apterygidae (kiwis), Casuariidae (cassowaries), and Dromaiidae (emus) wings flight Maxwell & Larsson, 2007  
Mammalia 
Cetacea (whales) pelvic girdle braces hindlimb against vertebral column support for reproductive organs Bejder & Hall, 2002; Simões-Lopes & Gutstein, 2004  
Mysticeti (baleen whales) hindlimbs locomotion Bejder & Hall, 2002  
Odontoceti (toothed whales) olfactory receptor subgenomes genes for olfactory receptors McGowen et al., 2008  
Monodon monoceros (narwhal) molariform teeth food processing Nweeia et al., 2012  
Felidae (cat family) clavicle braces scapula against sternum Hartstone-Rose et al., 2012  
Mus musculus (house mouse) incisor tooth bud production of incisor Peterková et al., 2002, 2006  
Spalax ehrengergi (Middle East blind mole rat) retina image formation regulation of circadian rhythms Zubidat et al., 2010  
Primates (primates) Harderian gland eye socket lubrication Rehorek & Smith, 2006  
Perodicticus potto (potto) index finger prehension Tague, 2002  
Ateles geoffroyi (Geoffroy’s spider monkey) and Colobus guereza (mantled guereza) thumb prehension Tague, 2002  
Catarrhini (humans, apes, and Old World monkeys) vomeronasal organ pheromone reception Liman & Innan, 2003; Zhang & Webb, 2003  
Homo sapiens (humans) sinus hair muscle whisker movement Tamatsu et al., 2007  
TaxonStructureStructure’s Function in Unreduced StateStructure’s Function in Vestigial StateReference(s)
Unicellular Organisms 
Amoebozoa 
Entamoeba histolytica mitochondria ATP synthesis Regoes et al., 2005  
Apicomplexa 
Cryptosporidium parvum mitochondria ATP synthesis Regoes et al., 2005  
Plasmodium falciparum chloroplast photosynthesis Sekiguchi et al., 2002  
Toxoplasma gondii chloroplast photosynthesis Sekiguchi et al., 2002  
Diplomonadida 
Giardia lamblia mitochondria ATP synthesis Fe-S cluster synthesis Regoes et al., 2005  
Euglenozoa 
Astasia longa chloroplast photosynthesis Sekiguchi et al., 2002  
Fungi 
Trachipleistophora humanis mitochondria ATP synthesis Regoes et al., 2005  
Heterokontophyta 
Anthophysa vegetans chloroplast photosynthesis Sekiguchi et al., 2002  
Blastocystis humanis mitochondria ATP synthesis Regoes et al., 2005  
Ciliophrys infusionum chloroplast photosynthesis Sekiguchi et al., 2002  
Pteridomonas danica chloroplast photosynthesis Sekiguchi et al., 2002  
Paraphysomonas chloroplast photosynthesis Sekiguchi et al., 2002  
Spumella chloroplast photosynthesis Sekiguchi et al., 2002  
Multicellular Organisms 
Plantae 
some Arecoideae (a subfamily of palms) male flowers pollen production Ortega-Chávez & Stauffer, 2011  
Gethyum and Gilliesia (South American allioids) stamens pollen production Rudall et al., 2002  
Schiedea (Hawaiian schiedeas) stamens pollen production Golonka et al., 2005  
Consolea spinosissima (a cactus) androecium [in female plants] pollen production Strittmatter et al., 2002  
Consolea spinosissima (a cactus) gynoecium [in male plants] sperm reception; ovule and fruit production Strittmatter et al., 2002  
Fragaria virginiana (strawberry) stamens pollen production Ashman, 2003  
Nemophila menziesii (Baby Blue-eyes) anthers pollen production Gomez & Shaw, 2006  
Penstemon centranthifolius (Scarlet Bugler) and P. rostriflorus (Beakflower Penstemon) stamen pollen production Walker-Larsen & Harder, 2001  
Penstemon ellipticus (Rocky Ledge Penstemon) stamen pollen production increases duration of pollinators’ visits by hindering nectar access Walker-Larsen & Harder, 2001  
Penstemon palmeri (Palmer’s Penstemon) stamen pollen production acts as a lever that increases stigma contact with pollinator Walker-Larsen & Harder, 2001  
Epifagus americana (Beechdrops) chloroplasts photosynthesis Sekiguchi et al., 2002  
Bryozoa 
Calloporidae (a bryozoan family) ooecium protects brood chamber Ostrovsky et al., 2006  
Mollusca 
Dolabifera dolabifera (a sea hare) ink gland defensive ink production algal pigment storage Prince & Johnson, 2006  
Octopus vulgaris (common octopus) shell external protection Napoleão et al., 2005  
Teuthida (squid) phragmocone buoyancy muscle and fin attachment Arkhipkin et al., 2012  
Arthropoda 
Cirripedia (barnacles) abdomen multiple functions Blin et al., 2003  
Carabus solieri (a ground beetle) hind wings flight Garnier et al., 2006  
Formidicae (ants) [workers] spermathecae sperm storage Bowsher et al., 2007; Gotoh et al., 2013  
Formicidae [workers of most species] wing imaginal discs wing production Bowsher et al., 2007  
Diacamma (a genus of wingless ants) [workers] wings flight social display of reproductive status Miura, 2005  
Apis cerana (eastern honeybee) and A. mellifera (European honeybee) [workers] spermathecae sperm storage Gotoh et al., 2012 
Lepidoptera larvae (caterpillars) crop food storage defensive regurgitation Grant, 2006  
Chondrichthyes 
Orectolobus maculatus (wobbegong shark) complementarity-determining region of IgNAR antibody adhesion to antigen Streltsov et al., 2004  
Actinopterygii 
Actinopterygii vertebral arches of posterior tail muscle attachment Bensimon-Brito et al., 2012  
Acipenseriformes (paddlefishes and sturgeons) pulmonary artery blood transport to gas bladder blood transport elsewhere Longo et al., 2013  
Astyanax mexicanus (blind cavefish) eyes vision regulation of circadian rhythms Espinasa & Jeffery, 2006; Franz-Odendaal & Hall, 2006; Yoshizawa & Jeffery, 2008  
Echidna nebulosa (snowflake moray) and Muraena retifera (reticulate moray) pectoral girdle support for pectoral fin Mehta & Wainwright, 2007  
Actinistia 
Latimeria (coelacanths) lung gas exchange Longo et al., 2013  
Latimeria pulmonary vein blood transport from lung to heart Longo et al., 2013  
Amphibia 
Plethodon cinereus (red-backed salamander) and Eurycea (brook salamanders) fourth epibranchial gill support Kerney et al., 2012  
Sirenidae (legless salamanders) pectoral girdle forelimb support Bejder & Hall, 2002  
Gegenophis ramaswamii (a caecilian) fourth epibranchial gill support Müller et al., 2005  
Squamata 
Pygopodidae (flap-footed lizards) hindlimbs locomotion Brandley et al., 2008  
Ophisaurus apodus (European legless lizard) hindlimbs locomotion Bejder & Hall, 2002; Brandley et al., 2008  
Bipes (a genus of worm lizarda) pelvic girdle hindlimb support Kearney, 2002  
Bipes hindlimbs locomotion Kearney, 2002  
Rhineura floridana (Florida worm lizard) eyes vision Kearney et al., 2005  
Rhineura floridana jugal bone forms lower border of eye socket Kearney et al., 2005  
Blanus (a genus of worm lizards) hindlimbs locomotion Kearney, 2002  
Feylinia (a skink genus) sternum forelimb muscle attachment Kearney, 2002  
Jarujinia bipedalis (a skink species) forelimbs locomotion Chan-ard et al., 2001  
some Serpentes (snakes) hindlimbs locomotion Kearney, 2002; Brandley et al., 2008  
Aves 
Apterygidae (kiwis), Casuariidae (cassowaries), and Dromaiidae (emus) wings flight Maxwell & Larsson, 2007  
Mammalia 
Cetacea (whales) pelvic girdle braces hindlimb against vertebral column support for reproductive organs Bejder & Hall, 2002; Simões-Lopes & Gutstein, 2004  
Mysticeti (baleen whales) hindlimbs locomotion Bejder & Hall, 2002  
Odontoceti (toothed whales) olfactory receptor subgenomes genes for olfactory receptors McGowen et al., 2008  
Monodon monoceros (narwhal) molariform teeth food processing Nweeia et al., 2012  
Felidae (cat family) clavicle braces scapula against sternum Hartstone-Rose et al., 2012  
Mus musculus (house mouse) incisor tooth bud production of incisor Peterková et al., 2002, 2006  
Spalax ehrengergi (Middle East blind mole rat) retina image formation regulation of circadian rhythms Zubidat et al., 2010  
Primates (primates) Harderian gland eye socket lubrication Rehorek & Smith, 2006  
Perodicticus potto (potto) index finger prehension Tague, 2002  
Ateles geoffroyi (Geoffroy’s spider monkey) and Colobus guereza (mantled guereza) thumb prehension Tague, 2002  
Catarrhini (humans, apes, and Old World monkeys) vomeronasal organ pheromone reception Liman & Innan, 2003; Zhang & Webb, 2003  
Homo sapiens (humans) sinus hair muscle whisker movement Tamatsu et al., 2007  

Discussion

To make our results more useful to others, we have included information on function in Table 1. A few vestigial structures are explicitly recognized as entirely useless in primary scientific literature (Table 1), but most are not.

It is probable that we have missed numerous examples of biological structures that scientists currently consider vestigial. This is because the online search engines cannot find every single scientific article published in the 21st century, because we examined no primary scientific literature from sources other than journal articles, and because we used only English-language articles. Table 1, therefore, should not be considered a complete list, and the absence of a structure therein does not necessarily mean that scientists do not currently consider it vestigial. Furthermore, we did not include the numerous examples of vestigial structures recognized in fossil taxa (e.g., Senter, 2010). These facts, in addition to the fact that Table 1 contains a plethora of examples despite its incompleteness, show that biological structures that scientists currently consider vestigial are common, not rare or nonexistent.

As Table 1 shows, some body parts are particularly prone to vestigiality in certain taxa or in organisms in certain ecological niches. For example, vestigial reproductive structures are common in plants. Vestigial limbs are common in lizards. Vestigial eyes are common in burrowing vertebrates. Vestigial mitochondria are common in microbes that inhabit anoxic environments.

Our results show that scientists recognize vestigiality at numerous levels of biological organization in addition to the organ level. In some cases, a major bodily region is vestigial (e.g., the abdomen of a barnacle; Blin et al., 2003). Structures smaller than organs can also be vestigial. Vestigial organelles have been identified in unicellular organisms (e.g., vestigial mitochondria in several species [Regoes et al., 2005] and vestigial chloroplasts in others [Sekiguchi et al., 2002]).Even parts of molecules can be considered vestigial. Researchers have recently identified vestigial genes in whales (McGowen et al., 2008) and a vestigial region in antibody molecules of wobbegong sharks (Streltsov et al., 2004).

It is rare for biology textbooks to mention vestigial structures other than organs and to list more than three examples. We therefore hope that our compilation in Table 1 will be useful to educators who wish to supplement meager textbook information with further examples. We also recommend that longer lists of vestigial structures be added to biology textbooks, to counter the YEC hypotheses that are falsified here.

Our study is easily adapted to biology classes as an assignment. If students are assigned to find a certain number of publications on vestigial structures in primary scientific literature, they need only be taught how to enter the term “vestigial” or “vestige” in an online search engine and to recognize primary scientific articles (e.g., by the presence of an abstract). The experience and knowledge gained during such an exercise would be a valuable addition to a student’s biological education.

References

References
Arkhipkin, A.I., Bizikov, V.A. & Fuchs, D. (2012). Vestigial phragmocone in the gladius points to a deepwater origin of squid (Mollusca: Cephalopoda). Deep-Sea Research I, 61, 109–122.
Ashman, T.-L. (2003). Constraints on the evolution of males and sexual dimorphism: field estimates of genetic architecture of reproductive traits in three populations of gynodioecious Fragaria virginiana. Evolution, 57, 2012–2025.
Bejder, L. & Hall, B.K. (2002). Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss. Evolution and Development, 4, 445–458.
Bensimon-Brito, A., Cancela, M.L., Huysseune, A. & Witten, P.E. (2012). Vestiges, rudiments and fusion events: the zebrafish caudal fin endoskeleton in an evo-devo perspective. Evolution and Development, 14, 116–127.
Bergman, J. (2000). Do any vestigial organs exist in humans? Creation Ex Nihilo Technical Journal, 14, 95–98.
Bergman, J. (2010). Inherit the Wind: a lesson in distorting history. Answers Research Journal, 3, 61–69.
Bergman, J. & Howe, G. (1990). “Vestigial Organs” Are Fully Functional. Kansas City, MO: Creation Research Society Books.
Blin, M., Rabet, N., Deutsch, J.S. & Mouchel-Vielh, E. (2003). Possible implication of Hox genes Abdominal-B and Abdominal-A in the specification of genital and abdominal segments in cirripedes. Development Genes and Evolution, 213, 90–96.
Bollinger, R.R., Barbas, A.S., Bush, E.L., Lin, S.S. & Parker, W. (2007). Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. Journal of Theoretical Biology, 249, 826–831.
Bowsher, J.H., Wray, G.A. & Abouheif, E. (2007). Growth and patterning and evolutionarily dissociated in the vestigial wing discs of workers of the red imported fire ant, Solenopsis invicta. Journal of Experimental Zoology B, 308B, 769–776.
Brandley, M.C., Huelsenbeck, J.P. & Wiens, J.J. (2008). Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution, 62, 2042–2064.
Chan-ard, T., Makchai, S. & Cota, M. (2001). Jarujinia: a new genus of lygosomine lizard from central Thailand, with a description of one new species. Thailand Natural History Museum Journal, 5, 17–24.
Eigenmann, C.H. (1900). Degeneration in the eyes of the cold-blooded vertebrates of the North American caves. Science, 11, 492–503.
Espinasa, L. & Jeffery, W.R. (2006). Conservation of retinal circadian rhythms during cavefish eye degeneration. Evolution and Development, 8, 16–22.
Franz-Odendaal, T.A. & Hall, B.K. (2006). Modularity and sense organs in the blind cavefish, Astyanax mexicanus. Evolution & Development, 8 , 94–100.
Garnier, S., Gidaszewski, N., Charlot, M., Rasplus, J.-Y. & Alibert, P. (2006). Hybridization, developmental stability, and functionality of morphological traits in the ground beetle Carabus solieri (Coleoptera, Carabidae). Biological Journal of the Linnean Society, 89, 151–158.
Golonka, A.M., Sakai, A.K. & Weller, S.G. (2005). Wind pollination, sexual dimorphism, and changes in floral traits of Schiedea (Caryophyllaceae). American Journal of Botany, 92, 1492–1502.
Gomez, N.N. & Shaw, R.G. (2006). Inbreeding effect on male and female fertility and inheritance of male sterility in Nemophila menziesii (Hydrophyllaceae). American Journal of Botany, 93, 739–746.
Gotoh, A., Ito, F. & Billen, J. (2013). Vestigial spermatheca morphology in honeybee workers, Apis cerana and A. mellifera from Japan. Apidologie, 44, 133–143.
Grant, J.B. (2006). Diversification of gut morphology in caterpillars is associated with defensive behavior. Journal of Experimental Biology, 209, 3018–3024.
Hartstone-Rose, A., Long, R.C., Farrell, A.B. & Shaw, C.A. (2012). The clavicles of Smilodon fatalis and Panthera atrox (Mammalia: Felidae) from Rancho La Brea, Los Angeles, California. Journal of Morphology, 273, 981–991.
Kardong, K.V. (2008). An Introduction to Biological Evolution, 2nd Ed. Boston, MA: McGraw-Hill.
Kardong, K.V. (2011). Vertebrates: Comparative Anatomy, Function, Evolution. Boston, MA: McGraw-Hill.
Kearney, M. (2002). Appendicular skeleton in amphisbaenians (Reptilia: Squamata). Copeia, 2002, 719–738.
Kearney, M., Anderson Maisano, J. & Rowe, T. (2005). Cranial anatomy of the extinct amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high-resolution computed x-ray tomography. Journal of Morphology, 264, 1–33.
Kerney, R.R., Blackburn, D.C., Müller, H. & Hanken, J. (2012). Do larval traits re-evolve? Evidence from the embryogenesis of a direct-developing salamander, Plethodon cinereus. Evolution, 66, 252–262.
Koop, C.E. & Schaeffer, F.A. (1987). Whatever Happened to the Human Race? Wheaton, IL: Crossway.
Liman, E.R. & Innan, H. (2003). Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proceedings of the National Academy of Sciences USA, 100, 3328–3332.
Longo, S., Riccio, M. & McCune, A.R. (2013). Homology of lungs and gas bladders: insights from arterial vasculature. Journal of Morphology, 274, 687–703.
Maxwell, E.E. & Larsson, H.C.E. (2007). Osteology and myology of the wing of the emu (Dromaius novaehollandiae), and its bearing on the evolution of vestigial structures. Journal of Morphology, 268, 423–441.
McGowen, M.R., Clark, C. & Gatesy, J. (2008). The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. Systematic Biology, 57, 574–590.
Mehta, R.S. & Wainwright, P.C. (2007). Biting releases constraints on moray eel feeding kinematics. Journal of Experimental Biology, 210, 495–504.
Menton, D.N. (2010). Vestigial organs – evidence for evolution? In K. Ham (Ed.), The New Answers Book 3 (pp. 229–240). Green Forest, Arkansas: Master Books.
Miura, T. (2005). Developmental regulation of caste-specific characters in social-insect polyphenism. Evolution and Development, 7, 122–129.
Moch, J.G. & Senter, P. (2011). Vestigial structures in the appendicular skeletons of eight African skink species (Squamata, Scincidae). Journal of Zoology, 285, 274–280.
Morris, H.M. (1974). Scientific Creationism. El Cajon, CA: Master Books.
Müller, H., Oommen, O.V. & Bartsch, P. (2005). Skeletal development of the direct-developing caecilian Gegeneophis ramaswamii. Zoomorphology, 124, 171–188.
Napoleão, P., Sousa Reis, C., Alves, L.C. & Pinheiro, T. (2005). Morphologic characterization and elemental distribution of Octopus vulgaris Cuvier, 1797 vestigial shell. Nuclear Instruments and Methods in Physics Research B, 231, 345–349.
Nweeia, M.T., Eichmiller, F.C., Hauschka, P.V., Tyler, E., Mead, J.G., Potter, C.W. & others (2012). Vestigial tooth anatomy and tusk nomenclature for Monodon monoceros. Anatomical Record, 295, 1006–1016.
Ortega-Chávez, N. & Stauffer, F.W. (2011). Ontogeny and structure of the acervulate partial inflorescence in Hyophorbe lagenicaulis (Arecaceae: Arecoideae). Annals of Botany, 108, 1517–1527.
Ostrovsky, A.N., Grischenko, A.V., Taylor, P.D., Bock, P. & Mawatari, S.F. (2006). Comparative anatomical study of internal brooding in three anascan bryozoans (Cheilostomata) and its taxonomic and evolutionary implications. Journal of Morphology, 267, 739–749.
Peterková, R., Lesot, H. & Peterka, M. (2006). Phylogenetic memory of developing mammalian dentition. Journal of Experimental Biology B, 306B, 234–250.
Peterková, R., Peterka, M., Viriot, L. & Lesot, H. (2002). Development of the vestigial tooth primordial as part of mouse odontogenesis. Connective Tissue Research, 43, 120–128.
Prince, J.S. & Johnson, P.M. (2006). Ultrastructural comparison of Aplysia and Dolabifera ink glands suggests cellular sites of anti-predator protein production and algal pigment processing. Journal of Molluscan Studies, 72, 349–357.
Reece, J.B., Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V. & Jackson, R.B. (2011). Campbell Biology, 9th Ed. Boston, MA: Benjamin Cummings.
Regoes, A., Zourmpanou, D., Léon-Avila, G., van der Giezen, M., Tovar, J. & Hehl, A.B. (2005). Protein import, replication, and inheritance of a vestigial mitochondrion. Journal of Biological Chemistry, 280, 30557–30563.
Rehorek, S.J. & Smith, T.D. (2006). The primate Harderian gland: does it really exist? Annals of Anatomy, 188, 319–327.
Ridley, M. (2004). Evolution, 3rd Ed. Oxford, UK: Blackwell.
Rudall, P.J., Bateman, R.M., Fay, M.F. & Eastman, A. (2002). Floral anatomy and systematics of Alliaceae with particular reference to Gilliesia, a presumed insect mimic with strongly zygomorphic flowers. American Journal of Botany, 89, 1867–1883.
Scott, G.B.D. (1980). The primate caecum and appendix vermiformis: a comparative study. Journal of Anatomy, 131, 549–563.
Sekiguchi, H., Moriya, M., Nakayama, T. & Inouye, I. (2002). Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist, 153, 157–167.
Senter, P. (2010). Vestigial skeletal structures in dinosaurs. Journal of Zoology, 280, 60–71.
Simões-Lopes, P. & Gutstein, C.S. (2004). Notes on the anatomy, positioning and homology of the pelvic bones in small cetaceans (Cetacea, Delphinidae, Pontoporidae). Lajam, 3, 157–162.
Starr, C. & Taggart, R. (2004). Biology The Unity and Diversity of Life, 10th Ed. Belmont, CA: Thompson Brooks Cole.
Streltsov, V.A., Varghese, J.N., Carmichael, J.A., Irving, R.A., Hudson, P.J., Nuttall, S.D. & Springer, T.A. (2004). Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proceedings of the National Academy of Sciences USA, 101, 12444–12449.
Strittmatter, L.I., Negrón-Ortiz, V. & Hickey, R.J. (2002). Subdioecy in Consolea spinosissima (Cactaceae): breeding system and embryological studies. American Journal of Botany, 89, 1373–1387.
Tague, R.G. (2002). Variability of metapodials in primates with rudimentary digits: Ateles geoffroyi, Colobus guereza, and Perodicticus potto. American Journal of Physical Anthropology, 117, 195–208.
Tamatsu, Y., Tsukahara, K., Hotta, M. & Shimada, K. (2007). Vestiges of vibrissal capsular muscles exist in the human upper lip. Clinical Anatomy, 20, 628–631.
Volpe, E.P. & Rosenbaum, P.A. (2000). Understanding Evolution, 6th Ed. Boston, MA: McGraw-Hill.
Walker-Larsen, J. & Harder, L.D. (2001). Vestigial organs as opportunities for functional innovation: the example of the Penstemon staminode. Evolution, 55, 477–487.
Yoshizawa, M. & Jeffery, W.R. (2008). Shadow response in the blind cavefish Astyanax reveals conservation of a functional pineal eye. Journal of Experimental Biology, 211, 292–299.
Zhang, J. & Webb, D.M. (2003). Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proceedings of the National Academy of Sciences USA, 100, 8337–8341.
Zubidat, A.E, Nelson, R.J. & Haim, A. (2010). Photoentrainment in blind and sighted rodent species: responses to photophase light with different wavelengths. Journal of Experimental Biology, 213, 4213–4222.